Rumberger Josef Lorenz, Lim Winna, Wildfeuer Benjamin, Sodemann Elisa Birgit, Lecler Augustin, Stemplinger Simon, Issever Ahi Sema, Sepahdari Ali, Langner Sönke, Kainmueller Dagmar, Hamm Bernd, Erb-Eigner Katharina
Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
Faculty of Mathematics and Natural Sciences, Humboldt University Berlin, Berlin, Germany.
Sci Rep. 2025 Apr 2;15(1):11334. doi: 10.1038/s41598-025-94634-6.
Diagnosing eye and orbit pathologies through radiological imaging presents considerable challenges due to their low prevalence, the extensive range of possible conditions, and their variable presentations, necessitating substantial domain-specific expertise. This study evaluates whether a ML-based content-based image retrieval (CBIR) tool, combined with a curated database of orbital MRI cases with verified diagnoses, can enhance diagnostic accuracy and reduce reading time for radiologists diagnosing eye and orbital pathologies. It explores whether this tool alone, or in combination with status quo reference tools (e.g. Radiopaedia.org, StatDx) provides these benefits. In a multi-reader, multi-case study involving 36 radiologists and 48 retrospective orbital MRI cases, participants diagnosed eight cases: four using status quo reference tools and four with the addition of the CBIR tool. Analysis using linear mixed-effects models revealed significant improvements in diagnostic accuracy when using the CBIR tool alone (55.88% vs. 70.59%, p = 0.03, odds ratio = 2.07) and an even greater improvement when used alongside status quo tools (55.88% vs. 83.33%, p = 0.02, odds ratio = 3.65). Reading time decreased when using the CBIR tool alone (334 s vs. 236 s, p < 0.001) but increased when used in conjunction with status quo tools (334 s vs. 396 s, p < 0.001). These findings indicate that CBIR tools can significantly enhance diagnostic accuracy for eye and orbit diagnostics, though their impact on reading time varies.
通过放射成像诊断眼部和眼眶疾病面临着巨大挑战,因为这些疾病的患病率较低、可能出现的病症范围广泛且表现各异,需要大量特定领域的专业知识。本研究评估了一种基于机器学习的基于内容的图像检索(CBIR)工具,结合一个经过整理且诊断已得到验证的眼眶MRI病例数据库,是否能够提高放射科医生诊断眼部和眼眶疾病的准确性,并减少其阅片时间。研究探讨了该工具单独使用或与现有参考工具(如Radiopaedia.org、StatDx)结合使用是否能带来这些益处。在一项涉及36名放射科医生和48例回顾性眼眶MRI病例的多读者、多病例研究中,参与者诊断了8个病例:4个病例使用现有参考工具,4个病例在使用现有参考工具的基础上增加了CBIR工具。使用线性混合效应模型进行分析发现,单独使用CBIR工具时诊断准确性有显著提高(55.88%对70.59%,p = 0.03,优势比 = 2.07),与现有工具一起使用时提高更为显著(55.88%对83.33%,p = 0.02,优势比 = 3.65)。单独使用CBIR工具时阅片时间减少(334秒对236秒,p < 0.001),但与现有工具结合使用时阅片时间增加(334秒对396秒,p < 0.001)。这些发现表明,CBIR工具可以显著提高眼部和眼眶疾病诊断的准确性,尽管它们对阅片时间的影响各不相同。