Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan.
Nat Commun. 2023 Mar 27;14(1):1691. doi: 10.1038/s41467-023-37448-2.
Small composite objects, known as Janus particles, drive sustained scientific interest primarily targeted at biomedical applications, where such objects act as micro- or nanoscale actuators, carriers, or imaging agents. A major practical challenge is to develop effective methods for the manipulation of Janus particles. The available long-range methods mostly rely on chemical reactions or thermal gradients, therefore having limited precision and strong dependency on the content and properties of the carrier fluid. To tackle these limitations, we propose the manipulation of Janus particles (here, silica microspheres half-coated with gold) by optical forces in the evanescent field of an optical nanofiber. We find that Janus particles exhibit strong transverse localization on the nanofiber and much faster propulsion compared to all-dielectric particles of the same size. These results establish the effectiveness of near-field geometries for optical manipulation of composite particles, where new waveguide-based or plasmonic solutions could be envisaged.
微小的复合物体,被称为“两面神粒子”,引起了持续的科学关注,主要针对生物医学应用,这些物体作为微纳尺度的执行器、载体或成像剂。一个主要的实际挑战是开发有效的方法来操纵两面神粒子。现有的远程方法主要依赖于化学反应或热梯度,因此具有有限的精度,并且强烈依赖于载体流体的含量和性质。为了解决这些限制,我们提出了通过光学纳米纤维的消逝场中的光学力来操纵两面神粒子(此处为一半涂有金的二氧化硅微球)。我们发现,与相同尺寸的全介质粒子相比,两面神粒子在纳米纤维上表现出强烈的横向定位和更快的推进速度。这些结果证实了近场几何形状对复合粒子光学操纵的有效性,在这种情况下,可以设想基于波导或等离子体的新解决方案。