Suppr超能文献

双层植入物:绵羊模型中再生关节软骨的机电评估

Bilayer Implants: Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model.

作者信息

Schagemann Jan C, Rudert Nicola, Taylor Michelle E, Sim Sotcheadt, Quenneville Eric, Garon Martin, Klinger Mathias, Buschmann Michael D, Mittelstaedt Hagen

机构信息

University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany; Mayo Clinic, Orthopedic Surgery, Rochester, MN, USA.

University Medical Center Schleswig-Holstein Campus Lübeck, Clinic for Orthopedics and Trauma Surgery, Lübeck, Germany.

出版信息

Cartilage. 2016 Oct;7(4):346-60. doi: 10.1177/1947603515623992. Epub 2016 Jan 22.

Abstract

OBJECTIVE

To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model.

METHODS

Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo.

RESULTS

Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest.

CONCLUSION

There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair.

摘要

目的

在初步的绵羊模型中比较两种不同双层植入物修复骨软骨缺损的再生能力。

方法

用新型仿生聚己内酯(PCL)植入物(治疗2组;n = 6)或Chondro - Gide和Orthoss组合(治疗1组;n = 6)治疗临界尺寸的骨软骨缺损。术后19个月,对修复组织(每组n = 5)进行组织学和生物化学分析。离体进行机电映射(Arthro - BST)。

结果

修复部位测量的组织学评分、机电定量参数值、双链DNA(dsDNA)和硫酸糖胺聚糖(sGAG)含量在统计学上低于对侧表面获得的值。机电映射以及较高的dsDNA和sGAG/重量水平表明治疗1组的再生效果更好。然而,这些差异并不显著。对于两种治疗,Arthro - BST均显示修复部位周围软骨有早期退变迹象。与治疗2组(8.7 ± 0.45标准误)相比,治疗1组修复组织的国际软骨修复协会II组织学评分显著更高(10.3 ± 0.38标准误)。细胞形态和血管化参数得分最高,而潮线形成得分最低。

结论

存在骨和软骨的细胞浸润及再生。然而,修复不完全且为纤维软骨。除了一些组织学评分类别外,两种治疗的再生质量没有显著差异。Arthro - BST测量结果与测量软骨修复质量的传统侵入性/破坏性方法相当。

相似文献

1
Bilayer Implants: Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model.
Cartilage. 2016 Oct;7(4):346-60. doi: 10.1177/1947603515623992. Epub 2016 Jan 22.
2
7
Porous tantalum biocomposites for osteochondral defect repair: A follow-up study in a sheep model.
Bone Joint Res. 2016 Sep;5(9):403-11. doi: 10.1302/2046-3758.59.BJR-2016-0070.R1.
10
Repair of articular cartilage defects with tissue-engineered osteochondral composites in pigs.
J Biosci Bioeng. 2011 Apr;111(4):493-500. doi: 10.1016/j.jbiosc.2010.11.023. Epub 2011 Jan 3.

引用本文的文献

1
Chitosan/Platelet-Rich Plasma Implants in an Ovine Arthroscopic Model of Meniscus Repair.
J Orthop Res. 2025 Oct;43(10):1875-1886. doi: 10.1002/jor.70014. Epub 2025 Jul 2.
3
Articular and Artificial Cartilage, Characteristics, Properties and Testing Approaches-A Review.
Polymers (Basel). 2021 Jun 18;13(12):2000. doi: 10.3390/polym13122000.
4
Osteochondral Repair and Electromechanical Evaluation of Custom 3D Scaffold Microstructured by Direct Laser Writing Lithography.
Cartilage. 2021 Dec;13(2_suppl):615S-625S. doi: 10.1177/1947603519847745. Epub 2019 May 9.
5
Quantitative Arthroscopic Assessment of Articular Cartilage Quality by Means of Cartilage Electromechanical Properties.
Arthrosc Tech. 2018 Jun 18;7(7):e763-e766. doi: 10.1016/j.eats.2018.03.003. eCollection 2018 Jul.
7
[Effect of polycaprolactone-ascobic acid scaffold in repairing articular cartilage defects in rabbits].
Nan Fang Yi Ke Da Xue Xue Bao. 2017 May 20;37(5):607-613. doi: 10.3969/j.issn.1673-4254.2017.05.07.

本文引用的文献

2
Strategies for osteochondral repair: Focus on scaffolds.
J Tissue Eng. 2014 Jul 8;5:2041731414541850. doi: 10.1177/2041731414541850. eCollection 2014.
3
5
Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering.
J Biomed Mater Res A. 2014 Nov;102(11):3998-4008. doi: 10.1002/jbm.a.35068. Epub 2014 Jan 9.
6
Cartilage regeneration.
J Am Acad Orthop Surg. 2013 May;21(5):303-11. doi: 10.5435/JAAOS-21-05-303.
7
Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering.
Int J Nanomedicine. 2013;8:337-50. doi: 10.2147/IJN.S38635. Epub 2013 Jan 18.
8
Extracellular matrix scaffolds for cartilage and bone regeneration.
Trends Biotechnol. 2013 Mar;31(3):169-76. doi: 10.1016/j.tibtech.2012.12.004. Epub 2013 Jan 5.
10
Osteochondral tissue engineering: current strategies and challenges.
Biotechnol Adv. 2013 Sep-Oct;31(5):706-21. doi: 10.1016/j.biotechadv.2012.11.004. Epub 2012 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验