Suppr超能文献

采用直接激光写入光刻技术制造定制 3D 支架的骨软骨修复和机电评估。

Osteochondral Repair and Electromechanical Evaluation of Custom 3D Scaffold Microstructured by Direct Laser Writing Lithography.

机构信息

Institute of Sports, Lithuanian University of Health Sciences, Kaunas, Lithuania.

Laboratory of Immunology, National Institute of Cancer, Vilnius, Lithuania.

出版信息

Cartilage. 2021 Dec;13(2_suppl):615S-625S. doi: 10.1177/1947603519847745. Epub 2019 May 9.

Abstract

OBJECTIVE

The objective of this study was to assess a novel 3D microstructured scaffold seeded with allogeneic chondrocytes (cells) in a rabbit osteochondral defect model.

DESIGN

Direct laser writing lithography in pre-polymers was employed to fabricate custom silicon-zirconium containing hybrid organic-inorganic (HOI) polymer SZ2080 scaffolds of a predefined morphology. Hexagon-pored HOI scaffolds were seeded with chondrocytes (cells), and tissue-engineered cartilage biocompatibility, potency, efficacy, and shelf-life was assessed by morphological, ELISA (enzyme-linked immunosorbent assay) and PCR (polymerase chain reaction) analysis. Osteochondral defect was created in the weight-bearing area of medial femoral condyle for study. Polymerized fibrin was added to every defect of 5 experimental groups. Cartilage repair was analyzed after 6 months using macroscopical (Oswestry Arthroscopy Score [OAS]), histological, and electromechanical quantitative potential (QP) scores. Collagen scaffold (CS) was used as a positive comparator for and studies.

RESULTS

Type II collagen gene upregulation and protein secretion was maintained up to 8 days in seeded HOI. analysis revealed improvement in all scaffold treatment groups. For the first time, electromechanical properties of a cellular-based scaffold were analyzed in a preclinical study. Cell addition did not enhance OAS but improved histological and QP scores in HOI groups.

CONCLUSIONS

HOI material is biocompatible for up to 8 days and is supportive of cartilage formation at 6 months . Electromechanical measurement offers a reliable quality assessment of repaired cartilage.

摘要

目的

本研究旨在评估一种新型 3D 微结构支架,该支架在兔骨软骨缺损模型中用同种异体软骨细胞(细胞)接种。

设计

采用预聚物中的直接激光写入光刻技术制造定制的硅锆含混合有机-无机(HOI)聚合物 SZ2080 支架,其形态预先定义。六方孔 HOI 支架接种软骨细胞(细胞),通过形态学、ELISA(酶联免疫吸附试验)和 PCR(聚合酶链反应)分析评估组织工程软骨的生物相容性、效力、疗效和保质期。在股骨内侧髁负重区创建骨软骨缺损进行研究。每个实验 5 组的缺陷都添加了聚合纤维蛋白。使用宏观(Oswestry 关节镜评分 [OAS])、组织学和机电定量潜力(QP)评分分析 6 个月后的软骨修复情况。胶原支架(CS)用作和研究的阳性对照。

结果

在接种 HOI 中,II 型胶原基因的上调和蛋白分泌维持至 8 天。分析显示所有支架治疗组均有改善。首次在临床前研究中分析了基于细胞的支架的机电性能。细胞添加并未提高 OAS,但改善了 HOI 组的组织学和 QP 评分。

结论

HOI 材料在 8 天内具有生物相容性,在 6 个月时支持软骨形成。机电测量为修复软骨的质量评估提供了可靠的方法。

相似文献

1
Osteochondral Repair and Electromechanical Evaluation of Custom 3D Scaffold Microstructured by Direct Laser Writing Lithography.
Cartilage. 2021 Dec;13(2_suppl):615S-625S. doi: 10.1177/1947603519847745. Epub 2019 May 9.
3
In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair.
Biomaterials. 2022 Jul;286:121548. doi: 10.1016/j.biomaterials.2022.121548. Epub 2022 May 2.
5
Composite hyaluronate-type I collagen-fibrin scaffold in the therapy of osteochondral defects in miniature pigs.
Physiol Res. 2007;56 Suppl 1:S5-S16. doi: 10.33549/physiolres.931296. Epub 2007 May 31.
7
Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats.
Knee Surg Sports Traumatol Arthrosc. 2008 Jul;16(7):690-8. doi: 10.1007/s00167-008-0522-1. Epub 2008 Apr 17.
8
Expandable Scaffold Improves Integration of Tissue-Engineered Cartilage: An In Vivo Study in a Rabbit Model.
Tissue Eng Part A. 2016 Jun;22(11-12):873-84. doi: 10.1089/ten.TEA.2015.0510.
9
Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits.
Acta Biomater. 2016 Mar 1;32:149-160. doi: 10.1016/j.actbio.2015.12.034. Epub 2015 Dec 24.
10
Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
Osteoarthritis Cartilage. 2013 Dec;21(12):1997-2005. doi: 10.1016/j.joca.2013.09.007. Epub 2013 Oct 2.

引用本文的文献

1
Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials.
Nat Commun. 2023 Sep 21;14(1):5876. doi: 10.1038/s41467-023-41535-9.
2
Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microglia.
Front Bioeng Biotechnol. 2022 Jul 22;10:926642. doi: 10.3389/fbioe.2022.926642. eCollection 2022.

本文引用的文献

1
Ultrafast laser processing of materials: from science to industry.
Light Sci Appl. 2016 Aug 12;5(8):e16133. doi: 10.1038/lsa.2016.133. eCollection 2016 Aug.
2
Role of Bioreactor Technology in Tissue Engineering for Clinical Use and Therapeutic Target Design.
Bioengineering (Basel). 2018 Apr 24;5(2):32. doi: 10.3390/bioengineering5020032.
3
Articular Cartilage Repair of the Knee in Children and Adolescents.
Orthop J Sports Med. 2018 Mar 13;6(3):2325967118760190. doi: 10.1177/2325967118760190. eCollection 2018 Mar.
4
5
Osteochondral repair using an acellular dermal matrix-pilot in vivo study in a rabbit osteochondral defect model.
J Orthop Res. 2018 Jul;36(7):1919-1928. doi: 10.1002/jor.23837. Epub 2018 Jan 24.
6
Biomaterials for articular cartilage tissue engineering: Learning from biology.
Acta Biomater. 2018 Jan;65:1-20. doi: 10.1016/j.actbio.2017.11.021. Epub 2017 Nov 8.
8
Erratum to: Development of an Electromechanical Grade to Assess Human Knee Articular Cartilage Quality.
Ann Biomed Eng. 2017 Oct;45(10):2422. doi: 10.1007/s10439-017-1887-4.
9
Second-Generation Autologous Minced Cartilage Repair Technique.
Arthrosc Tech. 2017 Jan 30;6(1):e127-e131. doi: 10.1016/j.eats.2016.09.011. eCollection 2017 Feb.
10
Bilayer Implants: Electromechanical Assessment of Regenerated Articular Cartilage in a Sheep Model.
Cartilage. 2016 Oct;7(4):346-60. doi: 10.1177/1947603515623992. Epub 2016 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验