Suppr超能文献

用于精确且多功能操作的生物兼容且高硬度的纳米光子阱阵列。

Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.

机构信息

Department of Physics-LASSP, Cornell University , Ithaca, New York 14853, United States.

Howard Hughes Medical Institute, Cornell University , Ithaca, New York 14853, United States.

出版信息

Nano Lett. 2016 Oct 12;16(10):6661-6667. doi: 10.1021/acs.nanolett.6b03470. Epub 2016 Sep 30.

Abstract

The advent of nanophotonic evanescent field trapping and transport platforms has permitted increasingly complex single molecule and single cell studies on-chip. Here, we present the next generation of nanophotonic Standing Wave Array Traps (nSWATs) representing a streamlined CMOS fabrication process and compact biocompatible design. These devices utilize silicon nitride (SiN) waveguides, operate with a biofriendly 1064 nm laser, allow for several watts of input power with minimal absorption and heating, and are protected by an anticorrosive layer for sustained on-chip microelectronics in aqueous salt buffers. In addition, due to SiN's negligible nonlinear effects, these devices can generate high stiffness traps while resolving subnanometer displacements for each trapped particle. In contrast to traditional table-top counterparts, the stiffness of each trap in an nSWAT device scales linearly with input power and is independent of the number of trapping centers. Through a unique integration of microcircuitry and photonics, the nSWAT can robustly trap, and controllably position, a large number of nanoparticles along the waveguide surface, operating in an all-optical, constant-force mode without need for active feedback. By reducing device fabrication cost, minimizing trapping laser specimen heating, increasing trapping force, and implementing commonly used trapping techniques, this new generation of nSWATs significantly advances the development of a high performance, low cost optical tweezers array laboratory on-chip.

摘要

纳米光子倏逝场俘获和传输平台的出现使得在芯片上对单个分子和单个细胞进行越来越复杂的研究成为可能。在这里,我们展示了下一代纳米光子驻波阵列陷阱(nSWAT),它代表了简化的 CMOS 制造工艺和紧凑的生物相容性设计。这些设备利用氮化硅(SiN)波导,使用生物友好的 1064nm 激光,允许几瓦特的输入功率,最小的吸收和加热,并用耐腐蚀层保护,以在水盐缓冲液中持续进行片上微电子学。此外,由于 SiN 的可忽略的非线性效应,这些设备可以在每个被捕获的粒子上产生高刚性陷阱,同时解决亚纳米位移。与传统的台式设备相比,nSWAT 设备中每个陷阱的刚度与输入功率呈线性比例,并且与俘获中心的数量无关。通过微电路和光子学的独特集成,nSWAT 可以沿着波导表面稳定地俘获和可控地定位大量纳米颗粒,以全光学、恒力模式运行,而无需主动反馈。通过降低器件制造成本、最小化俘获激光对样本的加热、增加俘获力以及实施常用的俘获技术,新一代 nSWAT 极大地推动了高性能、低成本光学镊子阵列实验室在芯片上的发展。

相似文献

1
Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
Nano Lett. 2016 Oct 12;16(10):6661-6667. doi: 10.1021/acs.nanolett.6b03470. Epub 2016 Sep 30.
2
Tunable nanophotonic array traps with enhanced force and stability.
Opt Express. 2017 Apr 3;25(7):7907-7918. doi: 10.1364/OE.25.007907.
3
High Trap Stiffness Microcylinders for Nanophotonic Trapping.
ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.
4
Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement.
Nat Commun. 2022 Jan 10;13(1):77. doi: 10.1038/s41467-021-27709-3.
5
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Nat Nanotechnol. 2014 Jun;9(6):448-52. doi: 10.1038/nnano.2014.79. Epub 2014 Apr 28.
6
7
On-chip optical trapping of extracellular vesicles using box-shaped composite SiO-SiN waveguides.
Opt Express. 2018 Oct 15;26(21):26985-27000. doi: 10.1364/OE.26.026985.
8
Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1). doi: 10.1002/wnan.1477. Epub 2017 Apr 24.
9
Calculation and measurement of trapping stiffness in femtosecond optical tweezers.
Opt Express. 2024 Mar 25;32(7):12358-12367. doi: 10.1364/OE.519449.
10
Towards biological applications of nanophotonic tweezers.
Curr Opin Chem Biol. 2019 Dec;53:158-166. doi: 10.1016/j.cbpa.2019.09.008. Epub 2019 Oct 31.

引用本文的文献

1
Optical torque calculations and measurements for DNA torsional studies.
Biophys J. 2024 Sep 17;123(18):3080-3089. doi: 10.1016/j.bpj.2024.07.005. Epub 2024 Jul 3.
2
Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement.
Nat Commun. 2022 Jan 10;13(1):77. doi: 10.1038/s41467-021-27709-3.
3
The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip.
Micromachines (Basel). 2021 Nov 28;12(12):1467. doi: 10.3390/mi12121467.
4
Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme.
Micromachines (Basel). 2020 Feb 15;11(2):202. doi: 10.3390/mi11020202.
5
Towards biological applications of nanophotonic tweezers.
Curr Opin Chem Biol. 2019 Dec;53:158-166. doi: 10.1016/j.cbpa.2019.09.008. Epub 2019 Oct 31.
6
High Trap Stiffness Microcylinders for Nanophotonic Trapping.
ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.
7
Particle Manipulation by Optical Forces in Microfluidic Devices.
Micromachines (Basel). 2018 Apr 24;9(5):200. doi: 10.3390/mi9050200.
8
Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects.
Light Sci Appl. 2017 Sep 22;6(9):e17039. doi: 10.1038/lsa.2017.39. eCollection 2017 Sep.
9
Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1). doi: 10.1002/wnan.1477. Epub 2017 Apr 24.

本文引用的文献

1
T7 replisome directly overcomes DNA damage.
Nat Commun. 2015 Dec 17;6:10260. doi: 10.1038/ncomms10260.
2
Dynamic regulation of transcription factors by nucleosome remodeling.
Elife. 2015 Jun 5;4:e06249. doi: 10.7554/eLife.06249.
3
DNA Y structure: a versatile, multidimensional single molecule assay.
Nano Lett. 2014 Nov 12;14(11):6475-80. doi: 10.1021/nl503009d. Epub 2014 Oct 14.
4
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Nat Nanotechnol. 2014 Jun;9(6):448-52. doi: 10.1038/nnano.2014.79. Epub 2014 Apr 28.
5
Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss.
Nat Commun. 2013;4:2579. doi: 10.1038/ncomms3579.
6
Single-molecule unzipping force analysis of HU-DNA complexes.
Chembiochem. 2013 Oct 11;14(15):1954-7. doi: 10.1002/cbic.201300413. Epub 2013 Sep 2.
7
Transcription under torsion.
Science. 2013 Jun 28;340(6140):1580-3. doi: 10.1126/science.1235441.
8
Limitations of constant-force-feedback experiments.
Biophys J. 2012 Oct 3;103(7):1490-9. doi: 10.1016/j.bpj.2012.06.051. Epub 2012 Oct 2.
9
Electro-optofluidics: achieving dynamic control on-chip.
Opt Express. 2012 Sep 24;20(20):22314-26. doi: 10.1364/OE.20.022314.
10
Underwound DNA under tension: structure, elasticity, and sequence-dependent behaviors.
Phys Rev Lett. 2011 Sep 2;107(10):108102. doi: 10.1103/PhysRevLett.107.108102. Epub 2011 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验