Suppr超能文献

用于纳米光子捕获的高阱刚度微圆柱体

High Trap Stiffness Microcylinders for Nanophotonic Trapping.

作者信息

Badman Ryan P, Ye Fan, Caravan Wagma, Wang Michelle D

出版信息

ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.

Abstract

Nanophotonic waveguides have enabled on-chip optical trap arrays for high-throughput manipulation and measurements. However, the realization of the full potential of these devices requires trapping enhancement for applications that need large trapping force. Here, we demonstrate a solution via fabrication of high refractive index cylindrical trapping particles. Using two different fabrication processes, a cleaving method and a novel lift-off method, we produced cylindrical silicon nitride (SiN) particles and characterized their trapping properties using the recently developed nanophotonic standing-wave array trap (nSWAT) platform. Relative to conventionally used polystyrene microspheres, the fabricated SiN microcylinders attain an approximately 3- to 6-fold trap stiffness enhancement. Furthermore, both fabrication processes permit tunable microcylinder geometry, and the lift-off method also results in ultrasmooth surface termination of the ends of the microcylinders. These combined features make the SiN microcylinders uniquely suited for a broad range of high-throughput, high-force, nanophotonic waveguide-based optical trapping applications.

摘要

纳米光子波导已实现用于高通量操控和测量的片上光学阱阵列。然而,要充分发挥这些器件的潜力,对于需要大捕获力的应用而言,还需要增强捕获效果。在此,我们通过制造高折射率圆柱形捕获粒子展示了一种解决方案。利用两种不同的制造工艺,即劈裂法和一种新颖的剥离法,我们制备了圆柱形氮化硅(SiN)粒子,并使用最近开发的纳米光子驻波阵列阱(nSWAT)平台对其捕获特性进行了表征。相对于传统使用的聚苯乙烯微球,所制备的SiN微圆柱体实现了约3至6倍的捕获刚度增强。此外,两种制造工艺都允许对微圆柱体的几何形状进行调节,并且剥离法还能使微圆柱体端部的表面终止极为光滑。这些综合特性使得SiN微圆柱体特别适用于广泛的基于纳米光子波导的高通量、高力光学捕获应用。

相似文献

1
High Trap Stiffness Microcylinders for Nanophotonic Trapping.
ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.
2
Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
Nano Lett. 2016 Oct 12;16(10):6661-6667. doi: 10.1021/acs.nanolett.6b03470. Epub 2016 Sep 30.
3
Tunable nanophotonic array traps with enhanced force and stability.
Opt Express. 2017 Apr 3;25(7):7907-7918. doi: 10.1364/OE.25.007907.
4
Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement.
Nat Commun. 2022 Jan 10;13(1):77. doi: 10.1038/s41467-021-27709-3.
5
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Nat Nanotechnol. 2014 Jun;9(6):448-52. doi: 10.1038/nnano.2014.79. Epub 2014 Apr 28.
6
On-chip optical trapping of extracellular vesicles using box-shaped composite SiO-SiN waveguides.
Opt Express. 2018 Oct 15;26(21):26985-27000. doi: 10.1364/OE.26.026985.
7
8
Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
Lab Chip. 2018 Jun 12;18(12):1750-1757. doi: 10.1039/c8lc00298c.
9
Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
Biomed Microdevices. 2021 Jun 29;23(3):33. doi: 10.1007/s10544-021-00570-3.
10
On-chip optical trapping and Raman spectroscopy using a TripleX dual-waveguide trap.
Opt Express. 2014 Dec 15;22(25):30528-37. doi: 10.1364/OE.22.030528.

引用本文的文献

1
Tunable elliptical cylinders for rotational mechanical studies of single DNA molecules.
Sci Adv. 2024 Dec 13;10(50):eadr4519. doi: 10.1126/sciadv.adr4519.
2
Tunable Elliptical Cylinders for Rotational Mechanical Studies of Single DNA Molecules.
bioRxiv. 2024 Sep 27:2024.09.25.614944. doi: 10.1101/2024.09.25.614944.
3
Optical torque calculations and measurements for DNA torsional studies.
Biophys J. 2024 Sep 17;123(18):3080-3089. doi: 10.1016/j.bpj.2024.07.005. Epub 2024 Jul 3.
4
Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement.
Nat Commun. 2022 Jan 10;13(1):77. doi: 10.1038/s41467-021-27709-3.
5
Versatile Multilayer Metamaterial Nanoparticles with Tailored Optical Constants for Force and Torque Transduction.
ACS Nano. 2020 Nov 24;14(11):14895-14906. doi: 10.1021/acsnano.0c04233. Epub 2020 Nov 10.
6
Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme.
Micromachines (Basel). 2020 Feb 15;11(2):202. doi: 10.3390/mi11020202.
7
Optical Micromachines for Biological Studies.
Micromachines (Basel). 2020 Feb 13;11(2):192. doi: 10.3390/mi11020192.
8
Towards biological applications of nanophotonic tweezers.
Curr Opin Chem Biol. 2019 Dec;53:158-166. doi: 10.1016/j.cbpa.2019.09.008. Epub 2019 Oct 31.

本文引用的文献

1
Transcription factor regulation of RNA polymerase's torque generation capacity.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2583-2588. doi: 10.1073/pnas.1807031116. Epub 2019 Jan 11.
2
High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
ACS Nano. 2018 Dec 26;12(12):11963-11974. doi: 10.1021/acsnano.8b03679. Epub 2018 Nov 20.
3
Unraveling the optomechanical nature of plasmonic trapping.
Light Sci Appl. 2016 Jul 1;5(7):e16092. doi: 10.1038/lsa.2016.92. eCollection 2016 Jul.
4
Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
Lab Chip. 2018 Jun 12;18(12):1750-1757. doi: 10.1039/c8lc00298c.
5
Optofluidic bioanalysis: fundamentals and applications.
Nanophotonics. 2017 Jul;6(4):647-661. doi: 10.1515/nanoph-2016-0156. Epub 2017 Mar 16.
6
Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1). doi: 10.1002/wnan.1477. Epub 2017 Apr 24.
7
Tunable nanophotonic array traps with enhanced force and stability.
Opt Express. 2017 Apr 3;25(7):7907-7918. doi: 10.1364/OE.25.007907.
8
Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
Nano Lett. 2016 Oct 12;16(10):6661-6667. doi: 10.1021/acs.nanolett.6b03470. Epub 2016 Sep 30.
10
Spectrally reconfigurable integrated multi-spot particle trap.
Opt Lett. 2015 Dec 1;40(23):5435-8. doi: 10.1364/OL.40.005435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验