Badman Ryan P, Ye Fan, Caravan Wagma, Wang Michelle D
ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.
Nanophotonic waveguides have enabled on-chip optical trap arrays for high-throughput manipulation and measurements. However, the realization of the full potential of these devices requires trapping enhancement for applications that need large trapping force. Here, we demonstrate a solution via fabrication of high refractive index cylindrical trapping particles. Using two different fabrication processes, a cleaving method and a novel lift-off method, we produced cylindrical silicon nitride (SiN) particles and characterized their trapping properties using the recently developed nanophotonic standing-wave array trap (nSWAT) platform. Relative to conventionally used polystyrene microspheres, the fabricated SiN microcylinders attain an approximately 3- to 6-fold trap stiffness enhancement. Furthermore, both fabrication processes permit tunable microcylinder geometry, and the lift-off method also results in ultrasmooth surface termination of the ends of the microcylinders. These combined features make the SiN microcylinders uniquely suited for a broad range of high-throughput, high-force, nanophotonic waveguide-based optical trapping applications.
纳米光子波导已实现用于高通量操控和测量的片上光学阱阵列。然而,要充分发挥这些器件的潜力,对于需要大捕获力的应用而言,还需要增强捕获效果。在此,我们通过制造高折射率圆柱形捕获粒子展示了一种解决方案。利用两种不同的制造工艺,即劈裂法和一种新颖的剥离法,我们制备了圆柱形氮化硅(SiN)粒子,并使用最近开发的纳米光子驻波阵列阱(nSWAT)平台对其捕获特性进行了表征。相对于传统使用的聚苯乙烯微球,所制备的SiN微圆柱体实现了约3至6倍的捕获刚度增强。此外,两种制造工艺都允许对微圆柱体的几何形状进行调节,并且剥离法还能使微圆柱体端部的表面终止极为光滑。这些综合特性使得SiN微圆柱体特别适用于广泛的基于纳米光子波导的高通量、高力光学捕获应用。