Suppr超能文献

电光流体学:实现片上动态控制

Electro-optofluidics: achieving dynamic control on-chip.

作者信息

Soltani Mohammad, Inman James T, Lipson Michal, Wang Michelle D

机构信息

Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.

出版信息

Opt Express. 2012 Sep 24;20(20):22314-26. doi: 10.1364/OE.20.022314.

Abstract

A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics.

摘要

集成光流体学中的一个关键要素是对光子器件进行动态调谐和精确控制,特别是在采用电子技术时,而在水性环境中应用这些技术具有挑战性。我们通过引入一个新平台来克服这一挑战,在该平台中,光子器件通过电光相位调谐进行控制。相位调谐是利用位于流体通道外部的片上微型电加热器通过热光效应产生的,并通过光波导传输到光流体器件。该微型电加热器体积紧凑、速度快(>18kHz)且功耗低(约mW)。我们展示了通过光流体谐振器对纳米颗粒进行动态光阱控制。这种新型的电光流体平台能够实现具有开关、调谐和重新配置能力的高通量光流体器件,并为光流体学带来新的发展方向。

相似文献

1
Electro-optofluidics: achieving dynamic control on-chip.
Opt Express. 2012 Sep 24;20(20):22314-26. doi: 10.1364/OE.20.022314.
2
The influence of substrate on SOI photonic crystal thermo-optic devices.
Opt Express. 2013 Feb 25;21(4):4235-43. doi: 10.1364/OE.21.004235.
3
Electro-optically tunable microwave source based on composite-cavity microchip laser.
Opt Express. 2012 Dec 17;20(27):29090-5. doi: 10.1364/OE.20.029090.
4
Waferscale nanophotonic circuits made from diamond-on-insulator substrates.
Opt Express. 2013 May 6;21(9):11031-6. doi: 10.1364/OE.21.011031.
5
Heterogenous catalysis mediated by plasmon heating.
Nano Lett. 2009 Dec;9(12):4417-23. doi: 10.1021/nl902711n.
6
Performance of electro-optical plasmonic ring resonators at telecom wavelengths.
Opt Express. 2012 Jan 30;20(3):2354-62. doi: 10.1364/OE.20.002354.
7
Photoconductive effect on p-i-p micro-heaters integrated in silicon microring resonators.
Opt Express. 2014 Jan 27;22(2):2141-9. doi: 10.1364/OE.22.002141.
8
Optofluidic jet waveguide for laser-induced fluorescence spectroscopy.
Opt Lett. 2012 Dec 15;37(24):5115-7. doi: 10.1364/OL.37.005115.
10
Compact, high-speed and power-efficient electrooptic plasmonic modulators.
Nano Lett. 2009 Dec;9(12):4403-11. doi: 10.1021/nl902701b.

引用本文的文献

1
Optical torque calculations and measurements for DNA torsional studies.
Biophys J. 2024 Sep 17;123(18):3080-3089. doi: 10.1016/j.bpj.2024.07.005. Epub 2024 Jul 3.
2
Resonator nanophotonic standing-wave array trap for single-molecule manipulation and measurement.
Nat Commun. 2022 Jan 10;13(1):77. doi: 10.1038/s41467-021-27709-3.
3
High Trap Stiffness Microcylinders for Nanophotonic Trapping.
ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25074-25080. doi: 10.1021/acsami.9b10041. Epub 2019 Jul 5.
4
Nanophotonic trapping: precise manipulation and measurement of biomolecular arrays.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018 Jan;10(1). doi: 10.1002/wnan.1477. Epub 2017 Apr 24.
6
Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
Nano Lett. 2016 Oct 12;16(10):6661-6667. doi: 10.1021/acs.nanolett.6b03470. Epub 2016 Sep 30.
8
High-throughput single-molecule studies of protein-DNA interactions.
FEBS Lett. 2014 Oct 1;588(19):3539-46. doi: 10.1016/j.febslet.2014.05.021. Epub 2014 May 21.
9
Nanophotonic trapping for precise manipulation of biomolecular arrays.
Nat Nanotechnol. 2014 Jun;9(6):448-52. doi: 10.1038/nnano.2014.79. Epub 2014 Apr 28.

本文引用的文献

1
DNA transport and delivery in thermal gradients near optofluidic resonators.
Phys Rev Lett. 2012 Jan 27;108(4):048102. doi: 10.1103/PhysRevLett.108.048102.
2
Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search.
Nature. 2012 Feb 8;482(7385):423-7. doi: 10.1038/nature10782.
3
Optofluidic Microsystems for Chemical and Biological Analysis.
Nat Photonics. 2011 Oct 1;5(10):591-597. doi: 10.1038/nphoton.2011.206.
4
ATP-induced helicase slippage reveals highly coordinated subunits.
Nature. 2011 Sep 18;478(7367):132-5. doi: 10.1038/nature10409.
5
Optofluidic waveguides for reconfigurable photonic systems.
Opt Express. 2011 Apr 25;19(9):8602-9. doi: 10.1364/OE.19.008602.
6
Thermally tunable silicon racetrack resonators with ultralow tuning power.
Opt Express. 2010 Sep 13;18(19):20298-304. doi: 10.1364/OE.18.020298.
7
Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.
Opt Express. 2010 Aug 16;18(17):18312-23. doi: 10.1364/OE.18.018312.
8
Subnanometre single-molecule localization, registration and distance measurements.
Nature. 2010 Jul 29;466(7306):647-51. doi: 10.1038/nature09163. Epub 2010 Jul 7.
9
Optical manipulation with planar silicon microring resonators.
Nano Lett. 2010 Jul 14;10(7):2408-11. doi: 10.1021/nl100501d.
10
Improvement of thermal properties of ultra-high Q silicon microdisk resonators.
Opt Express. 2007 Dec 10;15(25):17305-12. doi: 10.1364/oe.15.017305.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验