Soltani Mohammad, Inman James T, Lipson Michal, Wang Michelle D
Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA.
Opt Express. 2012 Sep 24;20(20):22314-26. doi: 10.1364/OE.20.022314.
A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics.
集成光流体学中的一个关键要素是对光子器件进行动态调谐和精确控制,特别是在采用电子技术时,而在水性环境中应用这些技术具有挑战性。我们通过引入一个新平台来克服这一挑战,在该平台中,光子器件通过电光相位调谐进行控制。相位调谐是利用位于流体通道外部的片上微型电加热器通过热光效应产生的,并通过光波导传输到光流体器件。该微型电加热器体积紧凑、速度快(>18kHz)且功耗低(约mW)。我们展示了通过光流体谐振器对纳米颗粒进行动态光阱控制。这种新型的电光流体平台能够实现具有开关、调谐和重新配置能力的高通量光流体器件,并为光流体学带来新的发展方向。