Suppr超能文献

氨基酸腺苷化酶的α-羟基酰基-AMS抑制剂的设计、合成及生物学评价

Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.

作者信息

Davis Tony D, Mohandas Poornima, Chiriac Maria I, Bythrow Glennon V, Quadri Luis E N, Tan Derek S

机构信息

Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, NY 10065, United States.

Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, United States.

出版信息

Bioorg Med Chem Lett. 2016 Nov 1;26(21):5340-5345. doi: 10.1016/j.bmcl.2016.09.027. Epub 2016 Sep 16.

Abstract

Biosynthesis of bacterial natural-product virulence factors is emerging as a promising antibiotic target. Many such natural products are produced by nonribosomal peptide synthetases (NRPS) from amino acid precursors. To develop selective inhibitors of these pathways, we have previously described aminoacyl-AMS (sulfamoyladenosine) macrocycles that inhibit NRPS amino acid adenylation domains but not mechanistically-related aminoacyl-tRNA synthetases. To improve the cell permeability of these inhibitors, we explore herein replacement of the α-amino group with an α-hydroxy group. In both macrocycles and corresponding linear congeners, this leads to decreased biochemical inhibition of the cysteine adenylation domain of the Yersina pestis siderophore synthetase HMWP2, which we attribute to loss of an electrostatic interaction with a conserved active-site aspartate. However, inhibitory activity can be regained by installing a cognate β-thiol moiety in the linear series. This provides a path forward to develop selective, cell-penetrant inhibitors of the biosynthesis of virulence factors to probe their biological functions and potential as therapeutic targets.

摘要

细菌天然产物毒力因子的生物合成正成为一个有前景的抗生素靶点。许多此类天然产物由非核糖体肽合成酶(NRPS)从氨基酸前体合成。为开发这些途径的选择性抑制剂,我们之前描述了抑制NRPS氨基酸腺苷化结构域但不抑制机制相关的氨酰基-tRNA合成酶的氨酰基-AMS(氨磺酰腺苷)大环化合物。为提高这些抑制剂的细胞通透性,我们在此探索用α-羟基取代α-氨基。在大环化合物和相应的线性类似物中,这都会导致鼠疫耶尔森菌铁载体合成酶HMWP2的半胱氨酸腺苷化结构域的生化抑制作用降低,我们将其归因于与保守活性位点天冬氨酸的静电相互作用丧失。然而,通过在线性系列中安装同源β-硫醇部分可以恢复抑制活性。这为开发毒力因子生物合成的选择性、细胞穿透性抑制剂以探究其生物学功能和作为治疗靶点的潜力提供了一条前进道路。

相似文献

1
Design, synthesis, and biological evaluation of α-hydroxyacyl-AMS inhibitors of amino acid adenylation enzymes.
Bioorg Med Chem Lett. 2016 Nov 1;26(21):5340-5345. doi: 10.1016/j.bmcl.2016.09.027. Epub 2016 Sep 16.
4
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products.
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):515-536. doi: 10.1007/s10295-018-2084-7. Epub 2018 Oct 5.
5
Specific enrichment of nonribosomal peptide synthetase module by an affinity probe for adenylation domains.
Bioorg Med Chem Lett. 2014 Feb 1;24(3):865-9. doi: 10.1016/j.bmcl.2013.12.082. Epub 2013 Dec 25.
7
A Competitive Enzyme-Linked Immunosorbent Assay System for Adenylation Domains in Nonribosomal Peptide Synthetases.
Chembiochem. 2016 Mar 15;17(6):474-8. doi: 10.1002/cbic.201500553. Epub 2016 Feb 16.
8
Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases.
Chem Commun (Camb). 2015 Feb 11;51(12):2262-5. doi: 10.1039/c4cc09412c.
9
Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells.
Beilstein J Org Chem. 2024 Feb 26;20:445-451. doi: 10.3762/bjoc.20.39. eCollection 2024.

引用本文的文献

1
Targeting Siderophore Biosynthesis to Thwart Microbial Growth.
Int J Mol Sci. 2025 Apr 11;26(8):3611. doi: 10.3390/ijms26083611.
2
Inhibition of Surfactin Biosynthesis in Bacillus Subtilis Using Cell-Permeable Adenylation Domain Inhibitors.
Chembiochem. 2025 Jun 16;26(12):e202500136. doi: 10.1002/cbic.202500136. Epub 2025 Apr 17.
3
Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors.
J Antibiot (Tokyo). 2019 Jun;72(6):325-349. doi: 10.1038/s41429-019-0171-2. Epub 2019 Apr 15.
4
Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents.
Biochemistry. 2019 Feb 12;58(6):833-847. doi: 10.1021/acs.biochem.8b01153. Epub 2019 Jan 10.

本文引用的文献

1
Antibacterial drug discovery in the resistance era.
Nature. 2016 Jan 21;529(7586):336-43. doi: 10.1038/nature17042.
3
Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents.
Biochemistry. 2015 Oct 27;54(42):6514-6524. doi: 10.1021/acs.biochem.5b00966. Epub 2015 Oct 15.
4
ESKAPEing the labyrinth of antibacterial discovery.
Nat Rev Drug Discov. 2015 Aug;14(8):529-42. doi: 10.1038/nrd4572. Epub 2015 Jul 3.
5
Characterization of cereulide synthetase, a toxin-producing macromolecular machine.
PLoS One. 2015 Jun 4;10(6):e0128569. doi: 10.1371/journal.pone.0128569. eCollection 2015.
6
Breaking a pathogen's iron will: Inhibiting siderophore production as an antimicrobial strategy.
Biochim Biophys Acta. 2015 Aug;1854(8):1054-70. doi: 10.1016/j.bbapap.2015.05.001. Epub 2015 May 10.
7
Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis.
PLoS Pathog. 2015 Mar 27;11(3):e1004792. doi: 10.1371/journal.ppat.1004792. eCollection 2015 Mar.
8
Diverging roles of bacterial siderophores during infection.
Metallomics. 2015 Jun;7(6):986-95. doi: 10.1039/c4mt00333k.
9
Gut symbionts from distinct hosts exhibit genotoxic activity via divergent colibactin biosynthesis pathways.
Appl Environ Microbiol. 2015 Feb;81(4):1502-12. doi: 10.1128/AEM.03283-14.
10
General platform for systematic quantitative evaluation of small-molecule permeability in bacteria.
ACS Chem Biol. 2014 Nov 21;9(11):2535-44. doi: 10.1021/cb5003015. Epub 2014 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验