Purdue University
Purdue University.
Perspect Psychol Sci. 2016 Sep;11(5):692-701. doi: 10.1177/1745691616663875.
Several calls have recently been issued to the social sciences for enhanced transparency of research processes and enhanced rigor in the methodological treatment of data and data analytics. We propose the use of graphical descriptives (GDs) as one mechanism for responding to both of these calls. GDs provide a way to visually examine data. They serve as quick and efficient tools for checking data distributions, variable relations, and the potential appropriateness of different statistical analyses (e.g., do data meet the minimum assumptions for a particular analytic method). Consequently, we believe that GDs can promote increased transparency in the journal review process, encourage best practices for data analysis, and promote a more inductive approach to understanding psychological data. We illustrate the value of potentially including GDs as a step in the peer-review process and provide a user-friendly online resource (www.graphicaldescriptives.org) for researchers interested in including data visualizations in their research. We conclude with suggestions on how GDs can be expanded and developed to enhance transparency.
最近有人呼吁社会科学界提高研究过程的透明度,并在数据和数据分析的方法处理上更加严谨。我们提出使用图形描述符(Graphical Descriptives,GDs)来响应这两个呼吁。GDs 提供了一种视觉检查数据的方法。它们是检查数据分布、变量关系以及不同统计分析(例如,数据是否满足特定分析方法的最小假设)适用性的快速而有效的工具。因此,我们认为 GDs 可以促进期刊评审过程中的透明度,鼓励数据分析的最佳实践,并促进对心理数据的更归纳理解。我们说明了将 GDs 作为同行评审过程中的一个步骤纳入的价值,并为有兴趣在研究中包含数据可视化的研究人员提供了一个用户友好的在线资源(www.graphicaldescriptives.org)。最后,我们提出了如何扩展和发展 GDs 以提高透明度的建议。