Denis de Senneville B, Zachiu C, Ries M, Moonen C
Imaging Division, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands. 'Institut de Mathématiques de Bordeaux', Université Bordeaux/CNRS UMR 5251, 351 Cours de la Libération, 33405 Talence Cedex, France.
Phys Med Biol. 2016 Oct 21;61(20):7377-7396. doi: 10.1088/0031-9155/61/20/7377. Epub 2016 Oct 3.
Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).
图像配准是众多医学应用的一部分,包括诊断、监测疾病进展和/或治疗效果,以及最近的治疗引导。此类应用通常涉及多种成像模态,如超声、计算机断层扫描、正电子发射断层扫描、x光或磁共振成像,这些模态可以单独使用,也可以组合使用。在当前的工作中,我们提出了一种非刚性多模态配准方法(即EVolution:一种基于边缘的非刚性多模态图像配准变分方法),其目的是使配准图像之间的边缘对齐最大化。所提出的算法仅需要生理组织之间的对比度,最好在两种图像模态中都存在,并假设组织是可变形/弹性的。结果表明,该算法非常适合于跨不同图像类型/对比度(T1/T2)以及不同模态(CT/MRI)的非刚性共配准。这是通过一种变分方案实现的,该方案提供了一种具有少量控制参数的快速算法。在带注释的CT数据集上获得的结果与在所有测试实验条件(图像预滤波、图像强度变化、噪声扰动)下最先进的多模态图像配准算法提供的结果相当。此外,我们证明,与现有方法相比,我们的方法对瞬态结构(即仅在某些图像中出现的结构)具有更高的鲁棒性。