School of Chemical Engineering, Qinghai University, Xining, Qinghai, 810016, China.
State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Appl Microbiol Biotechnol. 2016 Dec;100(23):10147-10163. doi: 10.1007/s00253-016-7865-1. Epub 2016 Oct 1.
In the present study, we explored the metabolic versatility of anaerobic ammonium oxidation (anammox) bacteria in a variety of Fe (III) concentrations. Specifically, we investigated the impacts of Fe (III) on anammox growth rates, on nitrogen removal performance, and on microbial community dynamics. The results from our short-term experiments revealed that Fe (III) concentrations (0.04-0.10 mM) significantly promote the specific anammox growth rate from 0.1343 to 0.1709 d. In the long-term experiments, the Anammox-anaerobic sequencing batch reactor (ASBR) was operated over 120 days and achieved maximum NH-N, NO-N, and TN efficiencies of 90.98 ± 0.35, 93.78 ± 0.29, and 83.66 ± 0.46 %, respectively. Pearson's correlation coefficients between anammox-(narG + napA), anammox-nrfA, and anammox-FeRB all exceeded r = 0.820 (p < 0.05), confirming an interaction and ecological association among the nitrogen and iron-cycling-related microbial communities. Illumina MiSeq sequencing indicated that Chloroflexi (34.39-39.31 %) was the most abundant phylum in an Anammox-ASBR system, followed by Planctomycetes (30.73-35.31 %), Proteobacteria (15.40-18.61 %), and Chlorobi (4.78-6.58 %). Furthermore, we found that higher Fe (III) supplementation (>0.06 mM) could result in the community succession of anammox species, in which Candidatus Brocadia and Candidatus Kuenenia were the dominant anammox bacteria species. Combined analyses indicated that the coupling of anammox, dissimilatory nitrogen reduction to ammonium, and iron reduction accounted for nitrogen loss in the Anammox-ASBR system. Overall, the knowledge gained in this study provides novel insights into the microbial community dynamics and metabolic potential of anammox bacteria under Fe (III) supplementation.
在本研究中,我们探讨了在不同铁(III)浓度下厌氧氨氧化(anammox)细菌的代谢多样性。具体而言,我们研究了铁(III)对厌氧氨氧化生长速率、氮去除性能和微生物群落动态的影响。短期实验的结果表明,铁(III)浓度(0.04-0.10 mM)显著促进了特定厌氧氨氧化生长速率,从 0.1343 增加到 0.1709 d。在长期实验中,厌氧氨氧化-厌氧序批式反应器(ASBR)运行了 120 天,实现了 NH-N、NO-N 和 TN 的最大去除效率,分别为 90.98±0.35%、93.78±0.29%和 83.66±0.46%。厌氧氨氧化(narG+napA)、厌氧氨氧化-nrfA 和厌氧氨氧化-FeRB 之间的 Pearson 相关系数均超过 r=0.820(p<0.05),证实了氮和铁循环相关微生物群落之间的相互作用和生态关联。Illumina MiSeq 测序表明,Chloroflexi(34.39-39.31%)是厌氧氨氧化-ASBR 系统中最丰富的门,其次是 Planctomycetes(30.73-35.31%)、Proteobacteria(15.40-18.61%)和 Chlorobi(4.78-6.58%)。此外,我们发现较高的铁(III)补充(>0.06 mM)可能导致厌氧氨氧化物种的群落演替,其中 Candidatus Brocadia 和 Candidatus Kuenenia 是优势厌氧氨氧化细菌。综合分析表明,厌氧氨氧化、异化氮还原为氨和铁还原的耦合是厌氧氨氧化-ASBR 系统中氮损失的原因。总的来说,本研究的结果为铁(III)补充下厌氧氨氧化细菌的微生物群落动态和代谢潜力提供了新的见解。