Lee Masson Haemy, Wallraven Christian, Petit Laurent
Department of Brain and Cognitive Engineering, Korea University, Seoul, 136-713, Korea.
Groupe d'Imagerie Neurofonctionnelle, Institut Des Maladies Neurodégénératives - UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
Hum Brain Mapp. 2017 Feb;38(2):842-854. doi: 10.1002/hbm.23422. Epub 2016 Oct 3.
Previous studies on visuo-haptic shape processing provide evidence that visually learned shape information can transfer to the haptic domain. In particular, recent neuroimaging studies have shown that visually learned novel objects that were haptically tested recruited parts of the ventral pathway from early visual cortex to the temporal lobe. Interestingly, in such tasks considerable individual variation in cross-modal transfer performance was observed. Here, we investigate whether this individual variation may be reflected in microstructural characteristics of white-matter (WM) pathways. We first trained participants on a fine-grained categorization task of novel shapes in the visual domain, followed by a haptic categorization test. We then correlated visual training-performance and haptic test-performance, as well as performance on a symbol-coding task requiring visuo-motor dexterity with microstructural properties of WM bundles potentially involved in visuo-haptic processing (the inferior longitudinal fasciculus [ILF], the fronto-temporal part of the superior longitudinal fasciculus [SLF ] and the vertical occipital fasciculus [VOF]). Behavioral results showed that haptic categorization performance was good on average but exhibited large inter-individual variability. Haptic performance also was correlated with performance in the symbol-coding task. WM analyses showed that fast visual learners exhibited higher fractional anisotropy (FA) in left SLF and left VOF. Importantly, haptic test-performance (and symbol-coding performance) correlated with FA in ILF and with axial diffusivity in SLF . These findings provide clear evidence that individual variation in visuo-haptic performance can be linked to microstructural characteristics of WM pathways. Hum Brain Mapp 38:842-854, 2017. © 2016 Wiley Periodicals, Inc.
以往关于视觉 - 触觉形状处理的研究表明,视觉学习到的形状信息可以转移到触觉领域。特别是,最近的神经影像学研究显示,经过视觉学习的新物体在进行触觉测试时,会激活从早期视觉皮层到颞叶的腹侧通路的部分区域。有趣的是,在这类任务中,观察到跨模态转移表现存在相当大的个体差异。在这里,我们研究这种个体差异是否可能反映在白质(WM)通路的微观结构特征中。我们首先让参与者在视觉领域进行新形状的细粒度分类任务训练,然后进行触觉分类测试。接着,我们将视觉训练表现和触觉测试表现,以及一项需要视觉 - 运动灵活性的符号编码任务的表现,与可能参与视觉 - 触觉处理的WM束(下纵束[ILF]、上纵束额颞部[SLF]和枕颞垂直束[VOF])的微观结构特性进行关联分析。行为结果表明,触觉分类表现平均良好,但个体间差异较大。触觉表现也与符号编码任务的表现相关。WM分析显示,视觉学习快的参与者在左侧SLF和左侧VOF中表现出更高的分数各向异性(FA)。重要的是,触觉测试表现(以及符号编码表现)与ILF中的FA以及SLF中的轴向扩散率相关。这些发现提供了明确的证据,表明视觉 - 触觉表现的个体差异可以与WM通路的微观结构特征相关联。《人类大脑图谱》38:842 - 854,2017年。© 2016威利期刊公司。