Suppr超能文献

稻田土壤-水-植物系统中氧化还原和生物地球化学循环的铁同位素指纹。

Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field.

机构信息

Instituto de Geociências, Universidade de Brasilia, IG/GMP-ICC Centro, 70919-970 Brasilia-DF, Brazil; Laboratoire Mixte International, LMI OCE « Observatoire des changements Environnementaux », Institut de Recherche pour le Développement/University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil.

Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE), UMR CNRS 7730, AMU (Aix-Marseille Université), BP 80, 13545 Aix en Provence, France.

出版信息

Sci Total Environ. 2017 Jan 1;574:1622-1632. doi: 10.1016/j.scitotenv.2016.08.202. Epub 2016 Sep 30.

Abstract

The iron isotope composition was used to investigate dissimilatory iron reduction (DIR) processes in an iron-rich waterlogged paddy soil, the iron uptake strategies of plants and its translocation in the different parts of the rice plant along its growth. Fe concentration and isotope composition (δFe) in irrigation water, precipitates from irrigation water, soil, pore water solution at different depths under the surface water, iron plaque on rice roots, rice roots, stems, leaves and grains were measured. Over the 8.5-10cm of the vertical profiles investigated, the iron pore water concentration (0.01 to 24.3mg·l) and δFe (-0.80 to -3.40‰) varied over a large range. The significant linear co-variation between Ln[Fe] and δFe suggests an apparent Rayleigh-type behavior of the DIR processes. An average net fractionation factor between the pore water and the soil substrate of ΔFe≈-1.15‰ was obtained, taking the average of all the δFe values weighted by the amount of Fe for each sample. These results provide a robust field study confirmation of the conceptual model of Crosby et al. (2005, 2007) for interpreting the iron isotope fractionation observed during DIR, established from a series of laboratories experiments. In addition, the strong enrichment of heavy Fe isotope measured in the root relative to the soil solution suggest that the iron uptake by roots is more likely supplied by iron from plaque and not from the plant-available iron in the pore water. Opposite to what was previously observed for plants following strategy II for iron uptake from soils, an iron isotope fractionation factor of -0.9‰ was found from the roots to the rice grains, pointing to isotope fractionation during rice plant growth. All these features highlight the insights iron isotope composition provides into the biogeochemical Fe cycling in the soil-water-rice plant systems studied in nature.

摘要

采用铁同位素组成来研究富铁渍水稻田中的异化铁还原(DIR)过程、植物的铁吸收策略及其在水稻生长过程中向不同部位的迁移。测量了灌溉水中的铁浓度和同位素组成(δFe)、灌溉水沉淀、土壤、不同深度地表水以下的孔隙水溶液、水稻根系上的铁斑、水稻根系、茎、叶和籽粒。在所研究的 8.5-10cm 垂直剖面中,铁孔隙水浓度(0.01 至 24.3mg·l)和 δFe(-0.80 至-3.40‰)变化范围很大。Ln[Fe]和 δFe 之间的显著线性协变表明 DIR 过程具有明显的 Rayleigh 型行为。通过对每个样品的铁量进行加权,得到了孔隙水与土壤基质之间的平均净分馏因子 ΔFe≈-1.15‰,这是所有 δFe 值的平均值。这些结果为 Crosby 等人(2005 年,2007 年)提出的用于解释 DIR 过程中观察到的铁同位素分馏的概念模型提供了强有力的野外研究确认,该模型是基于一系列实验室实验建立的。此外,与以前在土壤中通过策略 II 吸收铁的植物相比,根系中测量的重铁同位素强烈富集,表明根系的铁吸收更可能来自斑块中的铁,而不是来自孔隙水中的植物可用铁。与以前在土壤中通过策略 II 吸收铁的植物相反,从根系到水稻籽粒发现了-0.9‰的铁同位素分馏因子,表明在水稻生长过程中存在同位素分馏。所有这些特征都突出了铁同位素组成在自然中研究的土壤-水-水稻植物系统中的生物地球化学铁循环提供的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验