I. Physikalisches Institut, Georg-August-Universität Göttingen, 37077 Göttingen, Germany.
Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany.
Nat Commun. 2016 Oct 4;7:12902. doi: 10.1038/ncomms12902.
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation.
捕捉相关材料的动态电子能带结构为揭示电子和结构自由度之间的复杂耦合提供了强大的能力。当与超快激光激发结合使用时,由于远非平衡的激发态瞬时填充,新的物质相可以产生。在这里,我们阐明了超快非平衡电子动力学与相关电子材料特征能隙大小之间的一般关系。我们表明,通过碰撞离化的载流子倍增可以是带隙材料中最重要的过程之一,并且载流子倍增的速度关键取决于能隙的大小。在电荷密度波材料 1T-TiSe 的情况下,我们的数据表明载流子倍增和能隙动力学相互放大,这从微观层面解释了这种材料对超快光激发的极快响应。