Zhang Jinxie, Zhang Xudong, Liu Gan, Chang Danfeng, Liang Xin, Zhu Xianbing, Tao Wei, Mei Lin
School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China;; Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China.
School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China;; Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, P.R. China;; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
Theranostics. 2016 Sep 12;6(12):2099-2113. doi: 10.7150/thno.16587. eCollection 2016.
The inner membrane vesicle system is a complex transport system that includes endocytosis, exocytosis and autophagy. However, the details of the intracellular trafficking pathway of nanoparticles in cells have been poorly investigated. Here, we investigate in detail the intracellular trafficking pathway of protein nanocapsules using more than 30 Rab proteins as markers of multiple trafficking vesicles in endocytosis, exocytosis and autophagy. We observed that FITC-labeled protein nanoparticles were internalized by the cells mainly through Arf6-dependent endocytosis and Rab34-mediated micropinocytosis. In addition to this classic pathway: early endosome (EEs)/late endosome (LEs) to lysosome, we identified two novel transport pathways: micropinocytosis (Rab34 positive)-LEs (Rab7 positive)-lysosome pathway and EEs-liposome (Rab18 positive)-lysosome pathway. Moreover, the cells use slow endocytosis recycling pathway (Rab11 and Rab35 positive vesicles) and GLUT4 exocytosis vesicles (Rab8 and Rab10 positive) transport the protein nanocapsules out of the cells. In addition, protein nanoparticles are observed in autophagosomes, which receive protein nanocapsules through multiple endocytosis vesicles. Using autophagy inhibitor to block these transport pathways could prevent the degradation of nanoparticles through lysosomes. Using Rab proteins as vesicle markers to investigation the detail intracellular trafficking of the protein nanocapsules, will provide new targets to interfere the cellular behaver of the nanoparticles, and improve the therapeutic effect of nanomedicine.
内膜囊泡系统是一个复杂的运输系统,包括内吞作用、胞吐作用和自噬作用。然而,纳米颗粒在细胞内的运输途径细节尚未得到充分研究。在这里,我们以30多种Rab蛋白作为内吞作用、胞吐作用和自噬作用中多个运输囊泡的标志物,详细研究了蛋白质纳米胶囊的细胞内运输途径。我们观察到,FITC标记的蛋白质纳米颗粒主要通过Arf6依赖性内吞作用和Rab34介导的微胞饮作用被细胞内化。除了这条经典途径:早期内体(EEs)/晚期内体(LEs)到溶酶体,我们还确定了两条新的运输途径:微胞饮作用(Rab34阳性)-LEs(Rab7阳性)-溶酶体途径和EEs-脂质体(Rab18阳性)-溶酶体途径。此外,细胞利用缓慢的内吞作用回收途径(Rab11和Rab35阳性囊泡)和GLUT4胞吐囊泡(Rab8和Rab10阳性)将蛋白质纳米胶囊运输出细胞。此外,在自噬体中观察到蛋白质纳米颗粒,自噬体通过多个内吞囊泡接收蛋白质纳米胶囊。使用自噬抑制剂阻断这些运输途径可以防止纳米颗粒通过溶酶体降解。使用Rab蛋白作为囊泡标志物来研究蛋白质纳米胶囊的详细细胞内运输,将为干扰纳米颗粒的细胞行为提供新的靶点,并提高纳米医学的治疗效果。