Suppr超能文献

健康职业教育中学习曲线的统计建模入门。

A primer on the statistical modelling of learning curves in health professions education.

作者信息

Pusic Martin V, Boutis Kathy, Pecaric Martin R, Savenkov Oleksander, Beckstead Jason W, Jaber Mohamad Y

机构信息

Institute for Innovations in Medical Education, New York University School of Medicine, 550 First Avenue, MSB G109, New York, NY, 10016, USA.

The Hospital for Sick Children, and University of Toronto, Toronto, ON, Canada.

出版信息

Adv Health Sci Educ Theory Pract. 2017 Aug;22(3):741-759. doi: 10.1007/s10459-016-9709-2. Epub 2016 Oct 3.

Abstract

Learning curves are a useful way of representing the rate of learning over time. Features include an index of baseline performance (y-intercept), the efficiency of learning over time (slope parameter) and the maximal theoretical performance achievable (upper asymptote). Each of these parameters can be statistically modelled on an individual and group basis with the resulting estimates being useful to both learners and educators for feedback and educational quality improvement. In this primer, we review various descriptive and modelling techniques appropriate to learning curves including smoothing, regression modelling and application of the Thurstone model. Using an example dataset we demonstrate each technique as it specifically applies to learning curves and point out limitations.

摘要

学习曲线是表示随时间学习速率的一种有用方式。其特征包括基线表现指数(y轴截距)、随时间的学习效率(斜率参数)以及可达到的最大理论表现(上渐近线)。这些参数中的每一个都可以在个体和群体基础上进行统计建模,所得估计值对学习者和教育工作者进行反馈及提高教育质量都很有用。在本入门介绍中,我们回顾了适用于学习曲线的各种描述性和建模技术,包括平滑处理、回归建模以及瑟斯顿模型的应用。我们使用一个示例数据集展示了每种技术具体如何应用于学习曲线,并指出其局限性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验