Atroshchenko Gennady V, Navarra Emiliano, Valdis Matthew, Sandoval Elena, Hashemi Nasseh, Cerny Stepan, Pereda Daniel, Palmen Meindert, Bjerrum Flemming, Bruun Niels Henrik, Tolsgaard Martin G
Department of Cardiothoracic Surgery, Aalborg University Hospital, Aalborg, Denmark.
ROCnord Robotic Center Aalborg, Aalborg University Hospital, Aalborg, Denmark.
Interdiscip Cardiovasc Thorac Surg. 2024 Dec 25;40(1). doi: 10.1093/icvts/ivae227.
Simulation-based training has gained distinction in cardiothoracic surgery as robotic-assisted cardiac procedures evolve. Despite the increasing use of wet lab simulators, the effectiveness of these training methods and skill acquisition rates remain poorly understood.
This study aimed to compare learning curves and assess the robotic cardiac surgical skill acquisition rate for cardiac and noncardiac surgeons who had no robotic experience in a wet lab simulation setting.
In this prospective cohort study, participants practiced 3 robotic tasks in a porcine model: left atriotomy closure, internal thoracic artery harvesting and mitral annular suturing. Participants were novice robotic cardiac and noncardiac surgeons alongside experienced robotic cardiac surgeons who established performance benchmarks. Performance was evaluated using the time-based score and modified global evaluative assessment of robotic skills (mGEARS).
The participants were 15 novice surgeons (7 cardiac; 8 noncardiac) and 4 experienced robotic surgeons. Most novices reached mastery in 52 (±22) min for atrial closure, 32 (±18) for internal thoracic artery harvesting and 34 (±12) for mitral stitches, with no significant differences between the cardiac and noncardiac surgeons. However, for mGEARS, noncardiac novices faced more challenges in internal thoracic artery harvesting. The Thurstone learning curve model indicated no significant difference in the learning rates between the groups.
Wet lab simulation facilitates the rapid acquisition of robotic cardiac surgical skills to expert levels, irrespective of surgeons' experience in open cardiac surgery. These findings support the use of wet lab simulators for standardized, competency-based training in robotic cardiac surgery.
随着机器人辅助心脏手术的发展,基于模拟的培训在心胸外科领域已崭露头角。尽管湿实验室模拟器的使用越来越多,但这些培训方法的有效性和技能获取率仍知之甚少。
本研究旨在比较学习曲线,并评估在湿实验室模拟环境中没有机器人手术经验的心脏外科和非心脏外科医生的机器人心脏手术技能获取率。
在这项前瞻性队列研究中,参与者在猪模型中练习了3项机器人任务:左心房切开闭合、胸廓内动脉采集和二尖瓣环缝合。参与者包括机器人心脏手术新手和非心脏外科医生,以及确定性能基准的经验丰富的机器人心脏外科医生。使用基于时间的评分和机器人技能的改良整体评估(mGEARS)来评估性能。
参与者包括15名新手外科医生(7名心脏外科医生;8名非心脏外科医生)和4名经验丰富的机器人外科医生。大多数新手在52(±22)分钟内掌握了心房闭合,32(±18)分钟内掌握了胸廓内动脉采集,34(±12)分钟内掌握了二尖瓣缝合,心脏外科医生和非心脏外科医生之间没有显著差异。然而,对于mGEARS,非心脏外科新手在胸廓内动脉采集方面面临更多挑战。瑟斯顿学习曲线模型表明两组之间的学习率没有显著差异。
湿实验室模拟有助于将机器人心脏手术技能快速提升至专家水平,无论外科医生在心脏开放手术方面的经验如何。这些发现支持使用湿实验室模拟器进行机器人心脏手术的标准化、基于能力的培训。