Suppr超能文献

胰岛素受体基因复杂的顺式调控格局构成了一种核心信号调节因子广泛表达的基础。

Complex cis-regulatory landscape of the insulin receptor gene underlies the broad expression of a central signaling regulator.

作者信息

Wei Yiliang, Gokhale Rewatee H, Sonnenschein Anne, Montgomery Kelly Mone't, Ingersoll Andrew, Arnosti David N

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Development. 2016 Oct 1;143(19):3591-3603. doi: 10.1242/dev.138073.

Abstract

Insulin signaling plays key roles in development, growth and metabolism through dynamic control of glucose uptake, global protein translation and transcriptional regulation. Altered levels of insulin signaling are known to play key roles in development and disease, yet the molecular basis of such differential signaling remains obscure. Expression of the insulin receptor (InR) gene itself appears to play an important role, but the nature of the molecular wiring controlling InR transcription has not been elucidated. We characterized the regulatory elements driving Drosophila InR expression and found that the generally broad expression of this gene is belied by complex individual switch elements, the dynamic regulation of which reflects direct and indirect contributions of FOXO, EcR, Rbf and additional transcription factors through redundant elements dispersed throughout ∼40 kb of non-coding regions. The control of InR transcription in response to nutritional and tissue-specific inputs represents an integration of multiple cis-regulatory elements, the structure and function of which may have been sculpted by evolutionary selection to provide a highly tailored set of signaling responses on developmental and tissue-specific levels.

摘要

胰岛素信号传导通过对葡萄糖摄取、整体蛋白质翻译和转录调控的动态控制,在发育、生长和代谢中发挥关键作用。已知胰岛素信号传导水平的改变在发育和疾病中起关键作用,然而这种差异信号传导的分子基础仍不清楚。胰岛素受体(InR)基因本身的表达似乎起着重要作用,但控制InR转录的分子调控机制尚未阐明。我们对驱动果蝇InR表达的调控元件进行了表征,发现该基因普遍广泛的表达被复杂的单个开关元件所掩盖,这些元件的动态调控反映了FOXO、EcR、Rbf和其他转录因子通过分散在约40kb非编码区域的冗余元件所做出的直接和间接贡献。响应营养和组织特异性输入对InR转录的控制代表了多个顺式调控元件的整合,其结构和功能可能是通过进化选择塑造的,以便在发育和组织特异性水平上提供一组高度定制的信号反应。

相似文献

2
3
Transcriptional feedback control of insulin receptor by dFOXO/FOXO1.
Genes Dev. 2005 Oct 15;19(20):2435-46. doi: 10.1101/gad.1340505.
4
Long-range repression by ecdysone receptor on complex enhancers of the insulin receptor gene.
Fly (Austin). 2023 Dec;17(1):2242238. doi: 10.1080/19336934.2023.2242238.
6
Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny.
PLoS One. 2017 Dec 4;12(12):e0188357. doi: 10.1371/journal.pone.0188357. eCollection 2017.
8
The insulin receptor is required for the development of the Drosophila peripheral nervous system.
PLoS One. 2013 Sep 12;8(9):e71857. doi: 10.1371/journal.pone.0071857. eCollection 2013.
9
Drosophila Kruppel homolog 1 represses lipolysis through interaction with dFOXO.
Sci Rep. 2017 Nov 27;7(1):16369. doi: 10.1038/s41598-017-16638-1.
10
Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway.
Genes Dev. 2003 Aug 15;17(16):2006-20. doi: 10.1101/gad.1098703. Epub 2003 Jul 31.

引用本文的文献

1
Retinoblastoma protein activity revealed by CRISPRi study of divergent Rbf1 and Rbf2 paralogs.
G3 (Bethesda). 2024 Oct 4;14(12). doi: 10.1093/g3journal/jkae238.
2
Cis-regulatory control of transcriptional timing and noise in response to estrogen.
Cell Genom. 2024 May 8;4(5):100542. doi: 10.1016/j.xgen.2024.100542. Epub 2024 Apr 24.
3
Long-range repression by ecdysone receptor on complex enhancers of the insulin receptor gene.
Fly (Austin). 2023 Dec;17(1):2242238. doi: 10.1080/19336934.2023.2242238.
4
Long-range repression by ecdysone receptor on complex enhancers of the insulin receptor gene.
bioRxiv. 2023 May 23:2023.05.23.541945. doi: 10.1101/2023.05.23.541945.
5
-regulatory control of transcriptional timing and noise in response to estrogen.
bioRxiv. 2024 Feb 14:2023.03.14.532457. doi: 10.1101/2023.03.14.532457.
6
Toward the Decipherment of Molecular Interactions in the Diabetic Brain.
Biomedicines. 2022 Jan 6;10(1):115. doi: 10.3390/biomedicines10010115.
7
Cell cycle expression of polarity genes features Rb targeting of Vang.
Cells Dev. 2022 Mar;169:203747. doi: 10.1016/j.cdev.2021.203747. Epub 2021 Sep 25.
9
Transcriptional Enhancers in .
Genetics. 2020 Sep;216(1):1-26. doi: 10.1534/genetics.120.301370.
10
Selective repression of the Drosophila cyclin B promoter by retinoblastoma and E2F proteins.
Biochim Biophys Acta Gene Regul Mech. 2020 Jul;1863(7):194549. doi: 10.1016/j.bbagrm.2020.194549. Epub 2020 Apr 8.

本文引用的文献

3
A Systematic Ensemble Approach to Thermodynamic Modeling of Gene Expression from Sequence Data.
Cell Syst. 2015 Dec 23;1(6):396-407. doi: 10.1016/j.cels.2015.12.002.
4
SEA: a super-enhancer archive.
Nucleic Acids Res. 2016 Jan 4;44(D1):D172-9. doi: 10.1093/nar/gkv1243. Epub 2015 Nov 17.
5
FlyBase: establishing a Gene Group resource for Drosophila melanogaster.
Nucleic Acids Res. 2016 Jan 4;44(D1):D786-92. doi: 10.1093/nar/gkv1046. Epub 2015 Oct 13.
6
Genome-wide errant targeting by Hairy.
Elife. 2015 Aug 25;4:e06394. doi: 10.7554/eLife.06394.
7
Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs.
J Anim Sci Technol. 2014 Aug 1;56:12. doi: 10.1186/2055-0391-56-12. eCollection 2014.
8
Absence of canonical marks of active chromatin in developmentally regulated genes.
Nat Genet. 2015 Oct;47(10):1158-1167. doi: 10.1038/ng.3381. Epub 2015 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验