利用核苷酸序列的马尔可夫链作为预测人类基因组功能作用的可能前体:以非活性染色质区域为例的研究。

Using Markov chains of nucleotide sequences as a possible precursor to predict functional roles of human genome: a case study on inactive chromatin regions.

作者信息

Lee K-E, Lee E-J, Park H-S

机构信息

Bioinformatics Laboratory, Engineering School, Ewha Womans University, Seoul, Korea.

Bioinformatics Laboratory, Engineering School, Ewha Womans University, Seoul, Korea

出版信息

Genet Mol Res. 2016 Aug 30;15(3):gmr9004. doi: 10.4238/gmr.15039004.

Abstract

Recent advances in computational epigenetics have provided new opportunities to evaluate n-gram probabilistic language models. In this paper, we describe a systematic genome-wide approach for predicting functional roles in inactive chromatin regions by using a sequence-based Markovian chromatin map of the human genome. We demonstrate that Markov chains of sequences can be used as a precursor to predict functional roles in heterochromatin regions and provide an example comparing two publicly available chromatin annotations of large-scale epigenomics projects: ENCODE project consortium and Roadmap Epigenomics consortium.

摘要

计算表观遗传学的最新进展为评估n元语法概率语言模型提供了新机会。在本文中,我们描述了一种系统的全基因组方法,通过使用人类基因组基于序列的马尔可夫染色质图谱来预测非活性染色质区域中的功能作用。我们证明序列的马尔可夫链可以用作预测异染色质区域功能作用的前体,并提供了一个比较大规模表观基因组学项目的两个公开可用染色质注释的示例:ENCODE项目联盟和表观基因组学路线图联盟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索