Suppr超能文献

Spectacle:使用光谱学习进行快速染色质状态注释。

Spectacle: fast chromatin state annotation using spectral learning.

作者信息

Song Jimin, Chen Kevin C

出版信息

Genome Biol. 2015 Feb 12;16(1):33. doi: 10.1186/s13059-015-0598-0.

Abstract

Epigenomic data from ENCODE can be used to associate specific combinations of chromatin marks with regulatory elements in the human genome. Hidden Markov models and the expectation-maximization (EM) algorithm are often used to analyze epigenomic data. However, the EM algorithm can have overfitting problems in data sets where the chromatin states show high class-imbalance and it is often slow to converge. Here we use spectral learning instead of EM and find that our software Spectacle overcame these problems. Furthermore, Spectacle is able to find enhancer subtypes not found by ChromHMM but strongly enriched in GWAS SNPs. Spectacle is available at https://github.com/jiminsong/Spectacle.

摘要

来自ENCODE的表观基因组数据可用于将特定的染色质标记组合与人类基因组中的调控元件相关联。隐马尔可夫模型和期望最大化(EM)算法常用于分析表观基因组数据。然而,在染色质状态显示出高度类别不平衡的数据集里,EM算法可能会出现过拟合问题,并且其收敛速度通常较慢。在这里,我们使用谱学习而非EM算法,发现我们的软件Spectacle克服了这些问题。此外,Spectacle能够找到ChromHMM未发现但在全基因组关联研究(GWAS)单核苷酸多态性(SNP)中高度富集的增强子亚型。可在https://github.com/jiminsong/Spectacle获取Spectacle。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b81c/4355146/1b1680025716/13059_2015_598_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验