Suppr超能文献

关于宇宙中地下环境中银河宇宙射线诱导的辐射分解驱动生命存在的可能性。

On the possibility of galactic cosmic ray-induced radiolysis-powered life in subsurface environments in the Universe.

作者信息

Atri Dimitra

机构信息

Blue Marble Space Institute of Science, 1001 4th Avenue, Suite 3201, Seattle, WA 98154, USA

出版信息

J R Soc Interface. 2016 Oct;13(123). doi: 10.1098/rsif.2016.0459.

Abstract

Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed.

摘要

光合作用是陆地生命进化出的一种机制,用于将源自太阳光子的能量转化为生物可利用的能量。地下区域与光球层隔绝,因此无法利用这种能量。这为生命进化出替代机制以获取可用能量创造了机会。在南非一座矿井2.8千米深处发现的“大胆嗜硫珠菌”(Candidatus Desulforudis audaxviator),从周围岩石中存在的放射性铀、钍和钾发射的粒子引发的辐射分解过程中获取能量。地下环境中的另一个辐射源是银河宇宙射线(GCRs)产生的次级粒子。通过蒙特卡罗模拟表明,这是一个与放射性物质产生的能量相当的稳定能量源,并且不能排除缓慢代谢的生命在其上繁荣的可能性。提出了两种机制,通过这两种机制,GCRs诱导的次级粒子可在地下环境中用于生物用途:(i)GCRs通过粒子诱导的辐射分解在环境中注入能量,以及(ii)GCRs次级粒子与介质相互作用进行有机合成。还提出了用于检验这些假设的实验室实验。讨论了这些机制对在太阳系和宇宙其他地方寻找生命的意义。

相似文献

2
Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.
Astrobiology. 2013 Oct;13(10):910-9. doi: 10.1089/ast.2013.1052.
4
Low-energy break in the spectrum of Galactic cosmic rays.
Phys Rev Lett. 2012 Feb 3;108(5):051105. doi: 10.1103/PhysRevLett.108.051105. Epub 2012 Jan 31.
5
Water, air, Earth and cosmic radiation.
Orig Life Evol Biosph. 2015 Jun;45(1-2):5-13. doi: 10.1007/s11084-015-9402-0. Epub 2015 Mar 17.
7
The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.
Radiat Res. 2010 Feb;173(2):238-44. doi: 10.1667/RR1846.1.
8
Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
Radiat Prot Dosimetry. 2008;131(2):222-8. doi: 10.1093/rpd/ncn130. Epub 2008 Apr 30.
10
Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.
Science. 2014 Jan 24;343(6169):1244797. doi: 10.1126/science.1244797. Epub 2013 Dec 9.

引用本文的文献

1
Polymorphism in Glu-Phe-Asp Proteinoids.
Biomimetics (Basel). 2025 Jun 3;10(6):360. doi: 10.3390/biomimetics10060360.
2
Stephen Hawking's Warning on Contacting Aliens: A Physics Perspective on the Intelligence Trap.
J Biomed Phys Eng. 2024 Oct 1;14(5):513-516. doi: 10.31661/jbpe.v0i0.2306-1625. eCollection 2024 Oct.
4
Radioactivity to Rethink the Earth's Energy Balance.
Glob Chall. 2021 Mar 17;5(6):2000094. doi: 10.1002/gch2.202000094. eCollection 2021 Jun.
5
Potassium Radioisotope 40 as Component of Mitochondria Physiology: Therapy Proposal for Mitochondrial Disfunction Diseases.
Front Public Health. 2020 Oct 9;8:578392. doi: 10.3389/fpubh.2020.578392. eCollection 2020.
6
Simulations of ice chemistry in cometary nuclei.
Astrophys J. 2019 Oct 10;884(1). doi: 10.3847/1538-4357/ab418e. Epub 2019 Oct 14.
7
Microbial habitability of Europa sustained by radioactive sources.
Sci Rep. 2018 Jan 10;8(1):260. doi: 10.1038/s41598-017-18470-z.

本文引用的文献

1
Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4245-50. doi: 10.1073/pnas.1420932112. Epub 2015 Mar 23.
2
Mars atmosphere. Mars methane detection and variability at Gale crater.
Science. 2015 Jan 23;347(6220):415-7. doi: 10.1126/science.1261713. Epub 2014 Dec 16.
3
Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.
Astrobiology. 2013 Oct;13(10):910-9. doi: 10.1089/ast.2013.1052.
4
Ionizing radiation and life.
Astrobiology. 2011 Jul-Aug;11(6):551-82. doi: 10.1089/ast.2010.0528. Epub 2011 Jul 20.
6
Underground habitats in the Río Tinto basin: a model for subsurface life habitats on Mars.
Astrobiology. 2008 Oct;8(5):1023-47. doi: 10.1089/ast.2006.0104.
7
Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin.
Curr Opin Microbiol. 2008 Dec;11(6):525-31. doi: 10.1016/j.mib.2008.09.013. Epub 2008 Oct 24.
8
Environmental genomics reveals a single-species ecosystem deep within Earth.
Science. 2008 Oct 10;322(5899):275-8. doi: 10.1126/science.1155495.
10
Heavy ion carcinogenesis and human space exploration.
Nat Rev Cancer. 2008 Jun;8(6):465-72. doi: 10.1038/nrc2391. Epub 2008 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验