Atri Dimitra
Blue Marble Space Institute of Science, 1001 4th Avenue, Suite 3201, Seattle, WA 98154, USA
J R Soc Interface. 2016 Oct;13(123). doi: 10.1098/rsif.2016.0459.
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed.
光合作用是陆地生命进化出的一种机制,用于将源自太阳光子的能量转化为生物可利用的能量。地下区域与光球层隔绝,因此无法利用这种能量。这为生命进化出替代机制以获取可用能量创造了机会。在南非一座矿井2.8千米深处发现的“大胆嗜硫珠菌”(Candidatus Desulforudis audaxviator),从周围岩石中存在的放射性铀、钍和钾发射的粒子引发的辐射分解过程中获取能量。地下环境中的另一个辐射源是银河宇宙射线(GCRs)产生的次级粒子。通过蒙特卡罗模拟表明,这是一个与放射性物质产生的能量相当的稳定能量源,并且不能排除缓慢代谢的生命在其上繁荣的可能性。提出了两种机制,通过这两种机制,GCRs诱导的次级粒子可在地下环境中用于生物用途:(i)GCRs通过粒子诱导的辐射分解在环境中注入能量,以及(ii)GCRs次级粒子与介质相互作用进行有机合成。还提出了用于检验这些假设的实验室实验。讨论了这些机制对在太阳系和宇宙其他地方寻找生命的意义。