Mazel F, Davies T J, Gallien L, Renaud J, Groussin M, Münkemüller T, Thuiller W
Univ. Grenoble Alpes, Laboratoire d'Écologie Alpine (LECA), F-38000 Grenoble, France. CNRS, Laboratoire d'Écologie Alpine (LECA), F-38000 Grenoble, France;
Department of Biology, McGill University, 1205, Avenue Docteur Penfield, Montreal, Quebec, Canada. African Centre for DNA Barcoding, University of Johannesburg, APK Campus, PO Box 524, Auckland Park 2006, Johannesburg, South Africa;
Ecography. 2016 Oct;39(10):913-920. doi: 10.1111/ecog.01694. Epub 2015 Dec 9.
During the last decades, describing, analysing and understanding the phylogenetic structure of species assemblages has been a central theme in both community ecology and macro-ecology. Among the wide variety of phylogenetic structure metrics, three have been predominant in the literature: Faith's phylogenetic diversity (PD), which represents the sum of the branch lengths of the phylogenetic tree linking all species of a particular assemblage, the mean pairwise distance between all species in an assemblage (MPD) and the pairwise distance between the closest relatives in an assemblage (MNTD). Comparisons between studies using one or several of these metrics are difficult because there has been no comprehensive evaluation of the phylogenetic properties each metric captures. In particular it is unknown how PD relates to MDP and MNTD. Consequently, it is possible that apparently opposing patterns in different studies might simply reflect differences in metric properties. Here, we aim to fill this gap by comparing these metrics using simulations and empirical data. We first used simulation experiments to test the influence of community structure and size on the mismatch between metrics whilst varying the shape and size of the phylogenetic tree of the species pool. Second we investigated the mismatch between metrics for two empirical datasets (gut microbes and global carnivoran assemblages). We show that MNTD and PD provide similar information on phylogenetic structure, and respond similarly to variation in species richness and assemblage structure. However, MPD demonstrate a very different behaviour, and is highly sensitive to deep branching structure. We suggest that by combining complementary metrics that are sensitive to processes operating at different phylogenetic depths (i.e. MPD and MNTD or PD) we can obtain a better understanding of assemblage structure.
在过去几十年中,描述、分析和理解物种组合的系统发育结构一直是群落生态学和宏观生态学的核心主题。在各种各样的系统发育结构指标中,有三个在文献中占主导地位:费思系统发育多样性(PD),它代表连接特定组合中所有物种的系统发育树的分支长度总和;组合中所有物种之间的平均成对距离(MPD);以及组合中最亲近亲属之间的成对距离(MNTD)。使用这些指标中的一个或几个进行的研究之间的比较很困难,因为尚未对每个指标所捕捉的系统发育特性进行全面评估。特别是,PD与MDP和MNTD之间的关系尚不清楚。因此,不同研究中明显相反的模式可能仅仅反映了指标特性的差异。在这里,我们旨在通过使用模拟和实证数据比较这些指标来填补这一空白。我们首先使用模拟实验来测试群落结构和大小对指标之间不匹配的影响,同时改变物种库系统发育树的形状和大小。其次,我们研究了两个实证数据集(肠道微生物和全球食肉动物组合)指标之间的不匹配。我们表明,MNTD和PD提供了关于系统发育结构的相似信息,并且对物种丰富度和组合结构的变化有相似的反应。然而,MPD表现出非常不同的行为,并且对深部分支结构高度敏感。我们建议,通过结合对不同系统发育深度(即MPD和MNTD或PD)的过程敏感的互补指标,我们可以更好地理解组合结构。