Luque-Fernandez Miguel Angel, Belot Aurélien, Quaresma Manuela, Maringe Camille, Coleman Michel P, Rachet Bernard
Department of Non-Communicable Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Cancer Survival Group, Keppel Street, London, WC1E 7HT, UK.
BMC Med Res Methodol. 2016 Oct 1;16(1):129. doi: 10.1186/s12874-016-0234-z.
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion.
We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling.
All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models.
We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
在基于人群的癌症研究中,分段指数回归模型用于在泊松广义线性建模框架下得出因癌症导致的超额死亡率的校正估计值。然而,给定协变量集(x)时速率参数的条件均值和方差相等这一假设很强,并且鉴于速率参数的变异性(方差超过均值),可能无法解释过度离散现象。通过一个实证例子,我们旨在描述检验和校正过度离散的简单方法。
我们在相对生存框架下使用基于回归的过度离散得分检验,并提出了不同的校正过度离散的方法,包括拟似然法、稳健标准误差估计法、负二项回归法和灵活分段建模法。
所有分段指数回归模型均显示存在显著的固有过度离散((p)值(<0.001))。然而,对于非灵活分段指数模型,灵活分段指数模型显示出最小的过度离散参数((3.2)对(21.3))。
我们表明各方法之间没有重大差异。然而,使用灵活分段回归建模,结合拟似然法或稳健标准误差,是最佳方法,因为它既能处理因模型错误设定导致的过度离散,又能处理真实的或固有的过度离散。