Suppr超能文献

利用社会经济变量对大流行病中的脆弱县进行预警。

Early warning of vulnerable counties in a pandemic using socio-economic variables.

机构信息

Anthropology Dept., University of Tennessee, Knoxville, TN 37996, USA; Network Science Institute, Northeastern University, Boston, MA 02115, USA.

Anthropology Dept., University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Econ Hum Biol. 2021 May;41:100988. doi: 10.1016/j.ehb.2021.100988. Epub 2021 Feb 12.

Abstract

In the U.S. in early 2020, heterogenous and incomplete county-scale data on COVID-19 hindered effective interventions in the pandemic. While numbers of deaths can be used to estimate actual number of infections after a time lag, counties with low death counts early on have considerable uncertainty about true numbers of cases in the future. Here we show that supplementing county-scale mortality statistics with socioeconomic data helps estimate true numbers of COVID-19 infections in low-data counties, and hence provide an early warning of future concern. We fit a LASSO negative binomial regression to select a parsimonious set of five predictive variables from thirty-one county-level covariates. Of these, population density, public transportation use, voting patterns and % African-American population are most predictive of higher COVID-19 death rates. To test the model, we show that counties identified as under-estimating COVID-19 on an early date (April 17) have relatively higher deaths later (July 1) in the pandemic.

摘要

2020 年初在美国,关于 COVID-19 的异质且不完整的县级数据阻碍了大流行期间的有效干预。虽然死亡人数可以用来估计滞后一段时间后的实际感染人数,但早期死亡人数低的县对未来的实际病例数量存在相当大的不确定性。在这里,我们表明,用社会经济数据补充县级死亡率统计数据有助于估计低数据县 COVID-19 感染的真实数量,并为未来的关注提供早期预警。我们拟合了一个 LASSO 负二项式回归,从 31 个县级协变量中选择一组简洁的五个预测变量。在这些变量中,人口密度、公共交通使用、投票模式和非裔美国人比例是预测 COVID-19 死亡率较高的最重要变量。为了测试模型,我们表明,在早期(4 月 17 日)被确定为低估 COVID-19 的县在大流行后期(7 月 1 日)的死亡人数相对较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d43/8054145/52bdd31166b1/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验