Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2896-901. doi: 10.1073/pnas.0908565107. Epub 2010 Feb 1.
G41 is an interfacial residue located within the alpha-helix 34-42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for immunoreactivity deficiency, intraperoxisomal aggregation, and sensitivity to proteasomal degradation. However, no experimental evidence supports this view. Here we report that G41 mutations, besides increasing the dimer-monomer equilibrium dissociation constant, affect the protein conformation and stability, and perturb its active site. As compared to AGT-Ma or AGT-Mi, G41 variants display different near-UV CD and intrinsic emission fluorescence spectra, larger exposure of hydrophobic surfaces, sensitivity to Met53-Tyr54 peptide bond cleavage by proteinase K, decreased thermostability, reduced coenzyme binding affinity, and catalytic efficiency. Additionally, unlike AGT-Ma and AGT-Mi, G41 variants under physiological conditions form insoluble inactive high-order aggregates (approximately 5,000 nm) through intermolecular electrostatic interactions. A comparative molecular dynamics study of the putative structures of AGT-Mi and G41R-Mi predicts that G41 --> R mutation causes a partial unwinding of the 34-42 alpha-helix and a displacement of the first 44 N-terminal residues including the active site loop 24-32. These simulations help us to envisage the possible structural basis of AGT dysfunction associated with G41 mutations. The detailed insight into how G41 mutations act on the structure-function of AGT may contribute to achieve the ultimate goal of correcting the effects of these mutations.
G41 是丙氨酸:乙醛酸转氨酶(AGT)的α-螺旋 34-42 内的界面残基。其主要(AGT-Ma)或次要(AGT-Mi)等位基因的突变导致 G41R-Ma、G41R-Mi 和 G41V-Ma 变异型引起 1 型高草酸尿症。这些变异型中二聚体-单体平衡解离常数的损害被认为是导致免疫反应缺乏、过氧化物酶体内部聚集和对蛋白酶体降解敏感的原因。然而,没有实验证据支持这种观点。在这里,我们报告 G41 突变除了增加二聚体-单体平衡解离常数外,还会影响蛋白质构象和稳定性,并扰乱其活性位点。与 AGT-Ma 或 AGT-Mi 相比,G41 变异型显示出不同的近紫外 CD 和本征发射荧光光谱,更大的疏水性表面暴露,对蛋白酶 K 切割 Met53-Tyr54 肽键的敏感性,降低热稳定性,降低辅酶结合亲和力和催化效率。此外,与 AGT-Ma 和 AGT-Mi 不同,G41 变异型在生理条件下通过分子间静电相互作用形成不可溶的无活性高阶聚集体(约 5000nm)。AGT-Mi 和 G41R-Mi 的假定结构的比较分子动力学研究预测,G41-->R 突变导致 34-42α-螺旋的部分展开和包括活性位点环 24-32 的第一个 44 个 N 端残基的位移。这些模拟帮助我们设想与 G41 突变相关的 AGT 功能障碍的可能结构基础。深入了解 G41 突变如何作用于 AGT 的结构-功能可能有助于实现纠正这些突变影响的最终目标。