Institute for Physical Chemistry, Faculty of Chemistry and Earth Sciences, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany.
Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK.
Nat Commun. 2016 Oct 10;7:13078. doi: 10.1038/ncomms13078.
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
激子极化激元是在材料的电子激发态与周围微腔的光子态之间发生强耦合而形成的。在有机半导体中,激发态的特殊性质导致了特别强的耦合,并促进了激子极化激元在室温下的凝聚,这可能导致电泵浦有机极化激子激光器。然而,目前使用的材料中的电荷载流子迁移率和光稳定性有限,激子极化激元发射迄今为止仅限于可见光波长。在这里,我们使用聚合物基质中的单壁碳纳米管 (SWCNT) 和平面金属覆盖腔在近红外区域演示了强的光物质耦合。通过利用(6,5)SWCNT 的特殊振子强度和尖锐的激子跃迁,我们实现了大的拉比分裂(>110 meV)、有效的极化激元弛豫和窄带发射(<15 meV)。鉴于其高电荷载流子迁移率和优异的光稳定性,SWCNT 为在电信波长下运行的实用激子极化激元器件提供了一条有前途的新途径。