Huang Jian-Feng, Liu Zhi-Qiang, Jin Li-Qun, Tang Xiao-Ling, Shen Zhen-Yang, Yin Huan-Huan, Zheng Yu-Guo
Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Engineering Research Center of Bioconversion and Bio-Purification, Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Biotechnol Bioeng. 2017 Apr;114(4):843-851. doi: 10.1002/bit.26198. Epub 2016 Oct 21.
L-methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over-expression of homoserine O-succinyltransferase MetA together with efflux transporter YjeH, resulting in L-methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L-methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcAH more tolerant to high L-ethionine concentration and accumulated L-methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcAH. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5-fold increase in L-methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcAH. Finally, addition of Na S O to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcAH was able to produce 9.75 g/L L-methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L-methionine. Biotechnol. Bioeng. 2017;114: 843-851. © 2016 Wiley Periodicals, Inc.
L-甲硫氨酸因其营养、制药和临床应用而备受关注。在本研究中,通过缺失负转录调节因子MetJ并过表达高丝氨酸O-琥珀酰转移酶MetA以及外排转运蛋白YjeH对大肠杆菌W3110进行工程改造,从而实现L-甲硫氨酸的过量生产,产量高达413.16mg/L。通过破坏metI使L-甲硫氨酸导入系统MetD部分失活,使得工程化的大肠杆菌ΔmetJΔmetI/pTrcAH对高浓度L-乙硫氨酸具有更高的耐受性,并且积累的L-甲硫氨酸水平比大肠杆菌W3110ΔmetJ/pTrcAH高43.65%。此外,缺失阻断赖氨酸生物合成途径的lysA,使得大肠杆菌ΔmetJΔmetIΔlysA/pTrcAH的L-甲硫氨酸产量进一步提高了8.5倍。最后,向培养基中添加Na₂S₂O₃使发酵产量提高了11.45%。经过优化,构建的大肠杆菌ΔmetJΔmetIΔlysA/pTrcAH能够在5L生物反应器中以0.20g/L/h的生产率生产9.75g/L的L-甲硫氨酸。这种经过代谢改造的新型大肠杆菌菌株为微生物生产L-甲硫氨酸提供了一个高效平台。《生物技术与生物工程》2017年;114:843 - 851。©2016威利期刊公司