Hall Jacob B, Bush William S
Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio.
Curr Protoc Hum Genet. 2016 Oct 11;91:1.30.1-1.30.10. doi: 10.1002/cphg.25.
Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley & Sons, Inc.
大多数全基因组关联数据的分析都是独立考虑每个变异,而不考虑或调整基因组其余部分中存在的遗传背景。新的基因组分析方法使用基因组共享的表示形式,以更好地解释诸如群体分层等混杂因素,或通过数据集中个体的估计共享直接近似遗传力。这些方法使用混合线性模型,将基因型共享与表型共享联系起来,并依赖于数据集中个体间遗传共享的高效计算。本单元描述了用于全基因组关联研究数据分析的混合模型的原理和实际应用。© 2016约翰威立父子公司版权所有