Suppr超能文献

通过整合 microRNA 和 mRNA 数据集来优先考虑癌症相关的 microRNAs。

Prioritizing cancer-related microRNAs by integrating microRNA and mRNA datasets.

机构信息

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 500-712, Korea.

出版信息

Sci Rep. 2016 Oct 13;6:35350. doi: 10.1038/srep35350.

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of target genes, and they are involved in cancer initiation and progression. Even though many cancer-related miRNAs were identified, their functional impact may vary, depending on their effects on the regulation of other miRNAs and genes. In this study, we propose a novel method for the prioritization of candidate cancer-related miRNAs that may affect the expression of other miRNAs and genes across the entire biological network. For this, we propose three important features: the average expression of a miRNA in multiple cancer samples, the average of the absolute correlation values between the expression of a miRNA and expression of all genes, and the number of predicted miRNA target genes. These three features were integrated using order statistics. By applying the proposed approach to four cancer types, glioblastoma, ovarian cancer, prostate cancer, and breast cancer, we prioritized candidate cancer-related miRNAs and determined their functional roles in cancer-related pathways. The proposed approach can be used to identify miRNAs that play crucial roles in driving cancer development, and the elucidation of novel potential therapeutic targets for cancer treatment.

摘要

微小 RNA(miRNA)是调节靶基因表达的小非编码 RNA,它们参与癌症的发生和发展。尽管已经鉴定出许多与癌症相关的 miRNA,但它们的功能影响可能因它们对其他 miRNA 和基因调节的影响而有所不同。在这项研究中,我们提出了一种新的方法,用于优先考虑可能影响整个生物网络中其他 miRNA 和基因表达的候选癌症相关 miRNA。为此,我们提出了三个重要特征:miRNA 在多个癌症样本中的平均表达、miRNA 表达与所有基因表达之间的绝对相关值的平均值,以及预测的 miRNA 靶基因的数量。这三个特征使用有序统计进行整合。通过将提出的方法应用于四种癌症类型(脑胶质瘤、卵巢癌、前列腺癌和乳腺癌),我们对候选癌症相关 miRNA 进行了优先级排序,并确定了它们在癌症相关途径中的功能作用。该方法可用于鉴定在驱动癌症发展中起关键作用的 miRNA,并阐明癌症治疗的新的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a850/5062133/38ffe8cd21d0/srep35350-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验