Suppr超能文献

保留秩的双聚类算法:在 miRNA 乳腺癌中的案例研究。

Rank-preserving biclustering algorithm: a case study on miRNA breast cancer.

机构信息

Department of Computer Science and Engineering, Tezpur University, Assam, India.

Department of Computer Science, University of Colorado, Colorado Springs, CO, USA.

出版信息

Med Biol Eng Comput. 2021 Apr;59(4):989-1004. doi: 10.1007/s11517-020-02271-0. Epub 2021 Apr 11.

Abstract

Effective biomarkers aid in the early diagnosis and monitoring of breast cancer and thus play an important role in the treatment of patients suffering from the disease. Growing evidence indicates that alteration of expression levels of miRNA is one of the principal causes of cancer. We analyze breast cancer miRNA data to discover a list of biclusters as well as breast cancer miRNA biomarkers which can help to understand better this critical disease and take important clinical decisions for treatment and diagnosis. In this paper, we propose a pattern-based parallel biclustering algorithm termed Rank-Preserving Biclustering (RPBic). The key strategy is to identify rank-preserved rows under a subset of columns based on a modified version of all substrings common subsequence (ALCS) framework. To illustrate the effectiveness of the RPBic algorithm, we consider synthetic datasets and show that RPBic outperforms relevant biclustering algorithms in terms of relevance and recovery. For breast cancer data, we identify 68 biclusters and establish that they have strong clinical characteristics among the samples. The differentially co-expressed miRNAs are found to be involved in KEGG cancer related pathways. Moreover, we identify frequency-based biomarkers (hsa-miR-410, hsa-miR-483-5p) and network-based biomarkers (hsa-miR-454, hsa-miR-137) which we validate to have strong connectivity with breast cancer. The source code and the datasets used can be found at http://agnigarh.tezu.ernet.in/~rosy8/Bioinformatics_RPBic_Data.rar . Graphical Abstract.

摘要

有效的生物标志物有助于乳腺癌的早期诊断和监测,因此在治疗患有这种疾病的患者方面发挥着重要作用。越来越多的证据表明,miRNA 表达水平的改变是癌症的主要原因之一。我们分析乳腺癌 miRNA 数据,以发现一组双聚类和乳腺癌 miRNA 生物标志物,这有助于更好地了解这种关键疾病,并为治疗和诊断做出重要的临床决策。在本文中,我们提出了一种基于模式的并行双聚类算法,称为秩保持双聚类(RPBic)。该算法的关键策略是根据修改后的所有子串公共子序列(ALCS)框架,在一组列的子集下识别秩保持的行。为了说明 RPBic 算法的有效性,我们考虑了合成数据集,并表明 RPBic 在相关性和恢复方面优于相关的双聚类算法。对于乳腺癌数据,我们识别出 68 个双聚类,并确定它们在样本中具有强烈的临床特征。差异共表达的 miRNAs 被发现参与了 KEGG 癌症相关途径。此外,我们确定了基于频率的生物标志物(hsa-miR-410、hsa-miR-483-5p)和基于网络的生物标志物(hsa-miR-454、hsa-miR-137),我们验证了它们与乳腺癌具有很强的连接性。源代码和使用的数据集可以在 http://agnigarh.tezu.ernet.in/~rosy8/Bioinformatics_RPBic_Data.rar 找到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验