Suppr超能文献

使用MAREA步态数据库评估基于加速度计的步态事件检测算法在不同现实场景中的性能。

Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database.

作者信息

Khandelwal Siddhartha, Wickström Nicholas

机构信息

Center for Applied Intelligent Systems Research, Halmstad University, Sweden.

Center for Applied Intelligent Systems Research, Halmstad University, Sweden.

出版信息

Gait Posture. 2017 Jan;51:84-90. doi: 10.1016/j.gaitpost.2016.09.023. Epub 2016 Sep 28.

Abstract

Numerous gait event detection (GED) algorithms have been developed using accelerometers as they allow the possibility of long-term gait analysis in everyday life. However, almost all such existing algorithms have been developed and assessed using data collected in controlled indoor experiments with pre-defined paths and walking speeds. On the contrary, human gait is quite dynamic in the real-world, often involving varying gait speeds, changing surfaces and varying surface inclinations. Though portable wearable systems can be used to conduct experiments directly in the real-world, there is a lack of publicly available gait datasets or studies evaluating the performance of existing GED algorithms in various real-world settings. This paper presents a new gait database called MAREA (n=20 healthy subjects) that consists of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. The study also evaluates the performance of six state-of-the-art accelerometer-based GED algorithms in different real-world scenarios, using the MAREA gait database. The results reveal that the performance of these algorithms is inconsistent and varies with changing environments and gait speeds. All algorithms demonstrated good performance for the scenario of steady walking in a controlled indoor environment with a combined median F1score of 0.98 for Heel-Strikes and 0.94 for Toe-Offs. However, they exhibited significantly decreased performance when evaluated in other lesser controlled scenarios such as walking and running in an outdoor street, with a combined median F1score of 0.82 for Heel-Strikes and 0.53 for Toe-Offs. Moreover, all GED algorithms displayed better performance for detecting Heel-Strikes as compared to Toe-Offs, when evaluated in different scenarios.

摘要

许多步态事件检测(GED)算法已经利用加速度计开发出来,因为这使得在日常生活中进行长期步态分析成为可能。然而,几乎所有现有的此类算法都是使用在有预定义路径和步行速度的受控室内实验中收集的数据来开发和评估的。相反,在现实世界中,人类步态相当动态,通常涉及不同的步态速度、变化的地面和不同的地面倾斜度。虽然便携式可穿戴系统可用于直接在现实世界中进行实验,但缺乏公开可用的步态数据集或评估现有GED算法在各种现实世界场景中性能的研究。本文提出了一个名为MAREA的新步态数据库(n = 20名健康受试者),该数据库由在室内和室外环境中行走和跑步组成,加速度计分别放置在腰部、手腕和两个脚踝处。该研究还使用MAREA步态数据库评估了六种基于加速度计的先进GED算法在不同现实世界场景中的性能。结果表明,这些算法的性能不一致,并且会随着环境和步态速度的变化而变化。在受控室内环境中稳定行走的场景下,所有算法都表现出良好的性能,脚跟触地的综合中位数F1分数为0.98,脚尖离地的综合中位数F1分数为0.94。然而,当在其他控制较少的场景中进行评估时,如在室外街道上行走和跑步,它们的性能显著下降,脚跟触地的综合中位数F1分数为0.82,脚尖离地的综合中位数F1分数为0.53。此外,在不同场景下进行评估时,与脚尖离地检测相比,所有GED算法在检测脚跟触地方面都表现出更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验