Graz University of Technology , Institute for Chemistry and Technology of Materials, Stremayrgasse 9, 8010 Graz, Austria.
Graz University of Technology , Institute for Electron Microscopy and Nanoanalysis, Steyrergasse 17, 8010 Graz, Austria.
Biomacromolecules. 2016 Nov 14;17(11):3743-3749. doi: 10.1021/acs.biomac.6b01263. Epub 2016 Oct 25.
The creation of nano- and micropatterned polymer films is a crucial step for innumerous applications in science and technology. However, there are several problems associated with environmental aspects concerning the polymer synthesis itself, cross-linkers to induce the patterns as well as toxic solvents used for the preparation and even more important development of the films (e.g., chlorobenzene). In this paper, we present a facile method to produce micro- and nanopatterned biopolymer thin films using enzymes as so-called biodevelopers. Instead of synthetic polymers, naturally derived ones are employed, namely, poly-3-hydroxybutyrate and a cellulose derivative, which are dissolved in a common solvent in different ratios and subjected to spin coating. Consequently, the two biopolymers undergo microphase separation and different domain sizes are formed depending on the ratio of the biopolymers. The development step proceeds via addition of the appropriate enzyme (either PHB-depolymerase or cellulase), whereas one of the two biopolymers is selectively degraded, while the other one remains on the surface. In order to highlight the enzymatic development of the films, video AFM studies have been performed in real time to image the development process in situ as well as surface plasmon resonance spectroscopy to determine the kinetics. These studies may pave the way for the use of enzymes in patterning processes, particularly for materials intended to be used in a physiological environment.
纳米和微图案聚合物薄膜的制备是科学技术中无数应用的关键步骤。然而,聚合物合成本身、用于诱导图案的交联剂以及用于制备甚至更重要的薄膜开发的有毒溶剂都存在一些与环境方面相关的问题(例如氯苯)。在本文中,我们提出了一种使用酶作为所谓的生物显影剂生产微纳图案生物聚合物薄膜的简便方法。我们使用的是天然衍生的聚合物,而不是合成聚合物,即聚 3-羟基丁酸和纤维素衍生物,它们以不同的比例溶解在普通溶剂中,并进行旋涂。因此,这两种生物聚合物经历微相分离,形成不同的畴大小,这取决于生物聚合物的比例。通过添加适当的酶(PHB 解聚酶或纤维素酶)进行显影步骤,而两种生物聚合物中的一种被选择性降解,而另一种则留在表面上。为了突出薄膜的酶促发展,我们进行了实时视频原子力显微镜研究,以原位成像开发过程,以及表面等离子体共振光谱来确定动力学。这些研究可能为酶在图案化过程中的应用铺平道路,特别是对于旨在用于生理环境的材料。