Belardinelli Juan Manuel, Yazidi Amira, Yang Liang, Fabre Lucien, Li Wei, Jacques Benoit, Angala Shiva Kumar, Rouiller Isabelle, Zgurskaya Helen I, Sygusch Jurgen, Jackson Mary
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Station Centre-Ville, Montréal, Quebec, H3C 3J7, Canada.
ACS Infect Dis. 2016 Oct 14;2(10):702-713. doi: 10.1021/acsinfecdis.6b00095. Epub 2016 Sep 1.
The MmpL family of proteins translocates complex (glyco)lipids and siderophores across the cell envelope of mycobacteria and closely related Corynebacteriaceae and plays important roles in the biogenesis of the outer membrane of these organisms. Despite their significance in the physiology and virulence of Mycobacterium tuberculosis, and from the perspective of developing novel antituberculosis agents, little is known about their structure and mechanism of translocation. In this study, the essential mycobacterial mycolic acid transporter, MmpL3, and its orthologue in Corynebacterium glutamicum, CmpL1, were investigated as prototypical MmpL proteins to gain insight into the transmembrane topology, tertiary and quaternary structures, and functional regions of this transporter family. The combined genetic, biochemical, and biophysical studies indicate that MmpL3 and CmpL1 are structurally similar to Gram-negative resistance-nodulation and division efflux pumps. They harbor 12 transmembrane segments interrupted by two large soluble periplasmic domains and function as homotrimers to export long-chain (C-C) mycolic acids, possibly in their acetylated form, esterified to trehalose. The mapping of a number of functional residues within the middle region of the transmembrane domain of MmpL3 shows a striking overlap with mutations associated with resistance to MmpL3 inhibitors. The results suggest that structurally diverse inhibitors of MmpL3 all target the proton translocation path of the transporter and that multiresistance to these inhibitors is enabled by conformational changes in MmpL3.
MmpL蛋白家族可将复杂的(糖)脂类和铁载体转运穿过分枝杆菌以及密切相关的棒杆菌科细菌的细胞壁,在这些生物体的外膜生物合成中发挥重要作用。尽管它们在结核分枝杆菌的生理学和毒力方面具有重要意义,并且从开发新型抗结核药物的角度来看,人们对它们的结构和转运机制知之甚少。在本研究中,对分枝杆菌必需的分枝菌酸转运蛋白MmpL3及其在谷氨酸棒杆菌中的同源物CmpL1进行了研究,作为典型的MmpL蛋白,以深入了解该转运蛋白家族的跨膜拓扑结构、三级和四级结构以及功能区域。综合的遗传学、生物化学和生物物理学研究表明,MmpL3和CmpL1在结构上类似于革兰氏阴性菌的耐药-结瘤-分裂外排泵。它们含有12个跨膜区段,被两个大的可溶性周质结构域打断,并作为同三聚体发挥作用,输出可能以乙酰化形式酯化到海藻糖上的长链(C-C)分枝菌酸。MmpL3跨膜结构域中间区域内多个功能残基的定位显示,与对MmpL3抑制剂耐药相关的突变有显著重叠。结果表明,结构多样的MmpL3抑制剂均靶向该转运蛋白的质子转运途径,并且对这些抑制剂的多重耐药性是由MmpL3的构象变化导致的。