Suppr超能文献

一种基于超像素和带噪声应用的基于密度的空间聚类的肺结节图像序列分割方法。

A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise.

作者信息

Zhang Wei, Zhang Xiaolong, Zhao Juanjuan, Qiang Yan, Tian Qi, Tang Xiaoxian

机构信息

College of Computer Science and Technology, Taiyuan University of Technology, Jinzhong, Shanxi, China.

College of Information Science and Technology, Pennsylvania State University, University Park, Pennsylvania, United States of America.

出版信息

PLoS One. 2017 Sep 7;12(9):e0184290. doi: 10.1371/journal.pone.0184290. eCollection 2017.

Abstract

The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences.

摘要

肺结节图像序列的快速准确分割是后续处理和诊断分析的基础。然而,以往对结节分割算法的研究无法完全分割空洞性结节,且对血管旁结节的分割不准确且效率低下。为了解决这些问题,我们提出了一种基于超像素和具有噪声的基于密度的空间聚类应用(DBSCAN)的肺结节图像序列分割新方法。首先,我们的方法利用平均强度投影的三维计算机断层扫描图像特征结合多尺度点增强进行预处理。然后提出用于序列图像过分割的六边形聚类和形态学优化的顺序线性迭代聚类(HMSLIC)以获得超像素块。接着构建自适应权重系数来计算超像素之间所需的距离,以实现精确的肺结节定位并获得后续聚类起始块。此外,通过拟合距离并检测斜率变化来获得准确的聚类阈值。此后,使用一种通过仅对肺结节进行聚类和自适应阈值策略优化的快速DBSCAN超像素序列聚类算法来获得肺结节掩码序列。最后得到肺结节图像序列。实验结果表明,我们的方法能够快速、完整且准确地分割各种类型的肺结节图像序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b020/5589176/f270ce096632/pone.0184290.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验