Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mölndal, Sweden.
Department of Pharmacy, Uppsala University, Uppsala, Sweden.
Nat Chem Biol. 2016 Dec;12(12):1065-1074. doi: 10.1038/nchembio.2203. Epub 2016 Oct 17.
Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institute's diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.
大环化合物作为化学探针和针对蛋白质-蛋白质相互作用等棘手靶点的药物越来越受到关注,但它们的细胞通透性和口服吸收的决定因素还了解甚少。为了能够合理设计具有细胞通透性的大环化合物,我们在一致的实验条件下生成了一个广泛的数据集,其中包含了来自 Broad 研究所多样性导向筛选库的 200 多个非肽、从头设计的大环化合物。这揭示了特定的官能团、取代基和分子特性如何影响细胞通透性。对立体和区域异构集的能量最小化结构的分析为大环化合物 3D 构象中动态的、分子内相互作用如何与物理化学性质和通透性相关提供了基本的见解。定量构效关系模型和构象分析程序的联合使用,现在首次为化学家提供了一种合理的方法来设计具有口服吸收潜力的细胞通透性非肽大环化合物。