Suppr超能文献

铜联吡啶氧化还原介体用于具有高光电压的染料敏化太阳能电池。

Copper Bipyridyl Redox Mediators for Dye-Sensitized Solar Cells with High Photovoltage.

机构信息

Department of Chemical Sciences, University of Naples Federico II , 80126 Naples, Italy.

Department of Chemistry, Ångström Laboratory, Uppsala University , 751 20 Uppsala, Sweden.

出版信息

J Am Chem Soc. 2016 Nov 16;138(45):15087-15096. doi: 10.1021/jacs.6b10721. Epub 2016 Nov 3.

Abstract

Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to provide high photovoltages. With the introduction of our new copper complexes as promising redox mediators in DSCs both criteria are satisfied to enhance power conversion efficiencies. In this study, two copper bipyridyl complexes, Cu(dmby)TFSI (0.97 V vs SHE, dmby = 6,6'-dimethyl-2,2'-bipyridine) and Cu(tmby)TFSI (0.87 V vs SHE, tmby = 4,4',6,6'-tetramethyl-2,2'-bipyridine), are presented as new redox couples for DSCs. They are compared to previously reported Cu(dmp)TFSI (0.93 V vs SHE, dmp = bis(2,9-dimethyl-1,10-phenanthroline). Due to the small reorganization energy between Cu(I) and Cu(II) species, these copper complexes can sufficiently regenerate the oxidized dye molecules with close to unity yield at driving force potentials as low as 0.1 V. The high photovoltages of over 1.0 V were achieved by the series of copper complex based redox mediators without compromising photocurrent densities. Despite the small driving forces for dye regeneration, fast and efficient dye regeneration (2-3 μs) was observed for both complexes. As another advantage, the electron back transfer (recombination) rates were slower with Cu(tmby)TFSI as evidenced by longer lifetimes. The solar-to-electrical power conversion efficiencies for [Cu(tmby)], [Cu(dmby)], and [Cu(dmp)] based electrolytes were 10.3%, 10.0%, and 10.3%, respectively, using the organic Y123 dye under 1000 W m AM1.5G illumination. The high photovoltaic performance of Cu-based redox mediators underlines the significant potential of the new redox mediators and points to a new research and development direction for DSCs.

摘要

氧化还原介体在决定染料敏化太阳能电池(DSC)的光电流和光电压方面起着重要作用。为了维持光电流,氧化还原介体还原氧化染料的速度应该明显快于 TiO 和氧化染料之间的电子反向转移。用氧化还原介体制备染料的驱动力应该足够低,以提供高的光电压。通过引入我们新的铜配合物作为 DSC 中很有前途的氧化还原介体,这两个标准都得到了满足,以提高功率转换效率。在这项研究中,我们提出了两种铜联吡啶配合物,Cu(dmby)TFSI(0.97 V 相对于 SHE,dmby = 6,6'-二甲基-2,2'-联吡啶)和 Cu(tmby)TFSI(0.87 V 相对于 SHE,tmby = 4,4',6,6'-四甲基-2,2'-联吡啶),作为 DSC 的新氧化还原对。它们与之前报道的 Cu(dmp)TFSI(0.93 V 相对于 SHE,dmp = 双(2,9-二甲基-1,10-菲咯啉))进行了比较。由于 Cu(I)和 Cu(II)物种之间的重组能较小,这些铜配合物可以在驱动力电位低至 0.1 V 的情况下,以接近 1 的产率充分再生氧化染料分子。通过一系列基于铜络合物的氧化还原介体,实现了超过 1.0 V 的高光电压,而不会牺牲光电流密度。尽管染料再生的驱动力较小,但对于两种配合物都观察到了快速有效的染料再生(2-3 μs)。另一个优点是,电子反向转移(复合)速率较慢,这一点从较长的寿命中可以得到证明。使用有机 Y123 染料,在 1000 W m AM1.5G 光照下,基于[Cu(tmby)]、[Cu(dmby)]和[Cu(dmp)]的电解质的太阳能到电能的功率转换效率分别为 10.3%、10.0%和 10.3%。Cu 基氧化还原介体的高光电压性能突出了新氧化还原介体的巨大潜力,并为 DSC 的研究和开发指明了一个新的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验