Suppr超能文献

具有图像分割应用的析取范式形状和外观先验。

Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.

作者信息

Mesadi Fitsum, Cetin Mujdat, Tasdizen Tolga

机构信息

Electrical and Computer Engineering Department, University of Utah, USA.

Faculty of Engineering and Natural Sciences, Sabanci University, Turkey.

出版信息

Med Image Comput Comput Assist Interv. 2015 Oct;9351:703-710. doi: 10.1007/978-3-319-24574-4_84. Epub 2015 Nov 18.

Abstract

The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method.

摘要

在图像分割中使用外观和形状先验已知可提高准确性;然而,现有技术存在若干缺点。主动形状和外观模型需要地标点,并假设形状和外观分布为单峰。基于水平集的形状先验仅限于全局形状相似性。在本文中,我们基于一种称为析取范式形状模型(DNSM)的隐式参数形状表示,提出了一种用于图像分割的新型形状和外观先验。DNSM由判别式定义的半空间的合取的析取构成。我们使用非参数密度估计在不同空间尺度上学习形状和外观统计信息。我们的方法可以通过局部组合训练形状生成丰富的形状变化集。此外,通过研究我们形状模型每个判别式周围的强度和纹理统计信息,我们构建了一个局部外观概率图。在医学和自然图像数据集上进行的实验展示了所提方法的潜力。

相似文献

1
Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:703-710. doi: 10.1007/978-3-319-24574-4_84. Epub 2015 Nov 18.
2
Image Segmentation Using Disjunctive Normal Bayesian Shape and Appearance Models.
IEEE Trans Med Imaging. 2018 Jan;37(1):293-305. doi: 10.1109/TMI.2017.2756929. Epub 2017 Sep 26.
3
Multiscale 3-D shape representation and segmentation using spherical wavelets.
IEEE Trans Med Imaging. 2007 Apr;26(4):598-618. doi: 10.1109/TMI.2007.893284.
5
A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images.
Med Image Anal. 2013 Aug;17(6):587-600. doi: 10.1016/j.media.2013.04.001. Epub 2013 Apr 11.
6
Segmentation of prostate from 3-D ultrasound volumes using shape and intensity priors in level set framework.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2341-4. doi: 10.1109/IEMBS.2006.260000.
7
Spectral clustering of shape and probability prior models for automatic prostate segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2335-8. doi: 10.1109/EMBC.2012.6346431.
8
Efficient kernel density estimation of shape and intensity priors for level set segmentation.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):757-64. doi: 10.1007/11566489_93.
9
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
10
Shape sparse representation for joint object classification and segmentation.
IEEE Trans Image Process. 2013 Mar;22(3):992-1004. doi: 10.1109/TIP.2012.2226044. Epub 2012 Oct 22.

引用本文的文献

1
Dendritic Spines Shape Analysis-Classification or Clusterization? Perspective.
Front Synaptic Neurosci. 2020 Sep 30;12:31. doi: 10.3389/fnsyn.2020.00031. eCollection 2020.
2
DISJUNCTIVE NORMAL LEVEL SET: AN EFFICIENT PARAMETRIC IMPLICIT METHOD.
Proc Int Conf Image Proc. 2016 Sep;2016:4299-4303. doi: 10.1109/ICIP.2016.7533171. Epub 2016 Aug 19.

本文引用的文献

1
DISJUNCTIVE NORMAL SHAPE MODELS.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1535-1539. doi: 10.1109/ISBI.2015.7164170.
2
Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
IEEE Trans Med Imaging. 2012 Aug;31(8):1638-50. doi: 10.1109/TMI.2012.2201498. Epub 2012 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验