Vincenzi Simone, Crivelli Alain J, Munch Stephan, Skaug Hans J, Mangel Marc
Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of California, Santa Cruz, California, 95064, USA.
Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, Via Ponzio 34/5, I-20133, Milan, Italy.
Ecol Appl. 2016 Jul;26(5):1535-1552. doi: 10.1890/15-1177.
Better understanding of variation in growth will always be an important problem in ecology. Individual variation in growth can arise from a variety of processes; for example, individuals within a population vary in their intrinsic metabolic rates and behavioral traits, which may influence their foraging dynamics and access to resources. However, when adopting a growth model, we face trade-offs between model complexity, biological interpretability of parameters, and goodness of fit. We explore how different formulations of the von Bertalanffy growth function (vBGF) with individual random effects and environmental predictors affect these trade-offs. In the vBGF, the growth of an organism results from a dynamic balance between anabolic and catabolic processes. We start from a formulation of the vBGF that models the anabolic coefficient (q) as a function of the catabolic coefficient (k), a coefficient related to the properties of the environment (γ) and a parameter that determines the relative importance of behavior and environment in determining growth (ψ). We treat the vBGF parameters as a function of individual random effects and environmental variables. We use simulations to show how different functional forms and individual or group variability in the growth function's parameters provide a very flexible description of growth trajectories. We then consider a case study of two fish populations of Salmo marmoratus and Salmo trutta to test the goodness of fit and predictive power of the models, along with the biological interpretability of vBGF's parameters when using different model formulations. The best models, according to AIC, included individual variability in both k and γ and cohort as predictor of growth trajectories, and are consistent with the hypothesis that habitat selection is more important than behavioral and metabolic traits in determining lifetime growth trajectories of the two fish species. Model predictions of individual growth trajectories were largely more accurate than predictions based on mean size-at-age of fish. Our method shares information across individuals, and thus, for both fish populations investigated, allows using a single measurement early in the life of individual fish or cohort to obtain accurate predictions of lifetime individual or cohort size-at-age.
更好地理解生长变异始终是生态学中的一个重要问题。生长的个体变异可能源于多种过程;例如,种群中的个体在其内在代谢率和行为特征方面存在差异,这可能会影响它们的觅食动态和资源获取。然而,在采用生长模型时,我们面临模型复杂性、参数的生物学可解释性和拟合优度之间的权衡。我们探讨了具有个体随机效应和环境预测因子的不同形式的冯·贝塔朗菲生长函数(vBGF)如何影响这些权衡。在vBGF中,生物体的生长源于合成代谢和分解代谢过程之间的动态平衡。我们从一个vBGF的公式开始,该公式将合成代谢系数(q)建模为分解代谢系数(k)、与环境属性相关的系数(γ)以及一个决定行为和环境在决定生长中相对重要性的参数(ψ)的函数。我们将vBGF参数视为个体随机效应和环境变量的函数。我们使用模拟来展示生长函数参数的不同函数形式以及个体或群体变异性如何提供对生长轨迹的非常灵活的描述。然后,我们考虑一个关于大理石鳟和褐鳟两个鱼类种群的案例研究,以测试模型的拟合优度和预测能力,以及在使用不同模型公式时vBGF参数的生物学可解释性。根据AIC,最佳模型包括k和γ中的个体变异性以及群体作为生长轨迹的预测因子,并且与以下假设一致:在决定这两种鱼类的终生生长轨迹时,栖息地选择比行为和代谢特征更重要。个体生长轨迹的模型预测在很大程度上比基于鱼类年龄平均大小的预测更准确。我们的方法在个体之间共享信息,因此,对于所研究的两个鱼类种群,允许在个体鱼类或群体生命早期使用单一测量来获得对终生个体或群体年龄大小的准确预测。