Suppr超能文献

美国本土降尺度网格化气候数据评估。

Evaluation of downscaled, gridded climate data for the conterminous United States.

作者信息

Behnke R, Vavrus S, Allstadt A, Albright T, Thogmartin W E, Radeloff V C

机构信息

Numerical Terradynamic Simulation Group,  University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA.

Nelson Institute Center for Climatic Research,  University of Wisconsin-Madison, 1225 West Dayton Street, Madison, Wisconsin 53511, USA.

出版信息

Ecol Appl. 2016 Jul;26(5):1338-1351. doi: 10.1002/15-1061.

Abstract

Weather and climate affect many ecological processes, making spatially continuous yet fine-resolution weather data desirable for ecological research and predictions. Numerous downscaled weather data sets exist, but little attempt has been made to evaluate them systematically. Here we address this shortcoming by focusing on four major questions: (1) How accurate are downscaled, gridded climate data sets in terms of temperature and precipitation estimates? (2) Are there significant regional differences in accuracy among data sets? (3) How accurate are their mean values compared with extremes? (4) Does their accuracy depend on spatial resolution? We compared eight widely used downscaled data sets that provide gridded daily weather data for recent decades across the United States. We found considerable differences among data sets and between downscaled and weather station data. Temperature is represented more accurately than precipitation, and climate averages are more accurate than weather extremes. The data set exhibiting the best agreement with station data varies among ecoregions. Surprisingly, the accuracy of the data sets does not depend on spatial resolution. Although some inherent differences among data sets and weather station data are to be expected, our findings highlight how much different interpolation methods affect downscaled weather data, even for local comparisons with nearby weather stations located inside a grid cell. More broadly, our results highlight the need for careful consideration among different available data sets in terms of which variables they describe best, where they perform best, and their resolution, when selecting a downscaled weather data set for a given ecological application.

摘要

天气和气候影响着许多生态过程,这使得具有空间连续性且分辨率高的天气数据对于生态研究和预测来说很有必要。现已有众多降尺度天气数据集,但却很少有人尝试对它们进行系统评估。在此,我们通过关注四个主要问题来解决这一不足:(1)降尺度网格化气候数据集在温度和降水估计方面的准确性如何?(2)各数据集之间在准确性上是否存在显著的区域差异?(3)与极端值相比,它们的平均值准确性如何?(4)其准确性是否取决于空间分辨率?我们比较了八个广泛使用的降尺度数据集,这些数据集提供了近几十年来美国各地网格化的每日天气数据。我们发现各数据集之间以及降尺度数据集与气象站数据之间存在相当大的差异。温度的呈现比降水更准确,气候平均值比天气极端值更准确。与气象站数据一致性最佳的数据集在不同生态区域有所不同。令人惊讶的是,数据集的准确性并不取决于空间分辨率。尽管数据集和气象站数据之间存在一些固有的差异是可以预料的,但我们的研究结果凸显了不同的插值方法对降尺度天气数据的影响程度,即使是与位于网格单元内的附近气象站进行局部比较时也是如此。更广泛地说,我们的结果强调了在为特定生态应用选择降尺度天气数据集时,需要仔细考虑不同可用数据集在它们最能描述哪些变量、在哪些地方表现最佳以及它们的分辨率方面的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验