Suppr超能文献

相似文献

1
Coherent quantum transport features in carbon superlattice structures.
Sci Rep. 2016 Oct 19;6:35526. doi: 10.1038/srep35526.
2
Structurally Driven Enhancement of Resonant Tunneling and Nanomechanical Properties in Diamond-like Carbon Superlattices.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20726-35. doi: 10.1021/acsami.5b05657. Epub 2015 Sep 14.
3
Extended states in random dimer gated graphene superlattices.
J Phys Condens Matter. 2024 Jun 3;36(35). doi: 10.1088/1361-648X/ad4f3c.
4
Transport through quantum wells and superlattices on topological insulator surfaces.
J Phys Condens Matter. 2014 May 7;26(18):185007. doi: 10.1088/0953-8984/26/18/185007. Epub 2014 Apr 23.
6
Charge transport and localization in atomically coherent quantum dot solids.
Nat Mater. 2016 May;15(5):557-63. doi: 10.1038/nmat4576. Epub 2016 Feb 22.
7
Resonant tunnelling in a quantum oxide superlattice.
Nat Commun. 2015 Jun 24;6:7424. doi: 10.1038/ncomms8424.
8
Tight-Binding Quantum Chemical Molecular Dynamics Study on the Friction and Wear Processes of Diamond-Like Carbon Coatings: Effect of Tensile Stress.
ACS Appl Mater Interfaces. 2017 Oct 4;9(39):34396-34404. doi: 10.1021/acsami.7b07551. Epub 2017 Sep 25.
9
Electronic stripes and transport properties in borophene heterostructures.
Nanoscale. 2019 Oct 3;11(38):17894-17903. doi: 10.1039/c9nr05279h.
10
Diamond-like carbon (DLC) thin film bioelectrodes: effect of thermal post-treatments and the use of Ti adhesion layer.
Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:446-54. doi: 10.1016/j.msec.2013.09.035. Epub 2013 Oct 11.

引用本文的文献

2
Increasing the robustness and crack resistivity of high-performance carbon fiber composites for space applications.
iScience. 2021 Jun 5;24(6):102692. doi: 10.1016/j.isci.2021.102692. eCollection 2021 Jun 25.
3
Resonant Tunneling Induced Enhancement of Electron Field Emission by Ultra-Thin Coatings.
Sci Rep. 2019 May 2;9(1):6840. doi: 10.1038/s41598-019-43149-y.

本文引用的文献

1
Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
Sci Adv. 2016 Feb 26;2(2):e1501238. doi: 10.1126/sciadv.1501238. eCollection 2016 Feb.
2
Structurally Driven Enhancement of Resonant Tunneling and Nanomechanical Properties in Diamond-like Carbon Superlattices.
ACS Appl Mater Interfaces. 2015 Sep 23;7(37):20726-35. doi: 10.1021/acsami.5b05657. Epub 2015 Sep 14.
3
Negative differential conductance in molecular junctions: an overview of experiment and theory.
J Phys Condens Matter. 2015 Jul 8;27(26):263202. doi: 10.1088/0953-8984/27/26/263202. Epub 2015 Jun 15.
4
Origin of negative differential resistance in a strongly coupled single molecule-metal junction device.
Phys Rev Lett. 2008 Jun 20;100(24):246801. doi: 10.1103/PhysRevLett.100.246801. Epub 2008 Jun 16.
5
Mechanism for negative differential resistance in molecular electronic devices: local orbital symmetry matching.
Phys Rev Lett. 2007 Oct 5;99(14):146803. doi: 10.1103/PhysRevLett.99.146803. Epub 2007 Oct 4.
6
Influence of cumulenic chains on the vibrational and electronic properties of s p-s p2 amorphous carbon.
Phys Rev Lett. 2007 May 25;98(21):216103. doi: 10.1103/PhysRevLett.98.216103.
7
Energy loss spectroscopic profiling across linear interfaces: the example of amorphous carbon superlattices.
Ultramicroscopy. 2006 Mar;106(4-5):346-55. doi: 10.1016/j.ultramic.2005.11.004. Epub 2005 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验