Suppr超能文献

使用多有限缓冲区的精确化学主方程求解

ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.

作者信息

Cao Youfang, Terebus Anna, Liang Jie

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Multiscale Model Simul. 2016;14(2):923-963. doi: 10.1137/15M1034180. Epub 2016 Jun 29.

Abstract

The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by (!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.

摘要

离散化学主方程(dCME)为研究介观网络中的随机性提供了一个基本框架。由于许多网络具有多尺度性质,其中反应速率差异很大,直接求解dCME由于状态空间规模爆炸而难以处理。有效地截断状态空间并量化误差很重要,这样才能计算出精确解。知道是否计算出了所有主要的概率峰值也很重要。在这里,我们介绍了用于直接求解dCME的精确CME(ACME)算法。通过多有限缓冲区(通过(!)减少状态空间),可以计算精确的稳态和随时间演化的网络概率分布。我们进一步描述了一个理论框架,通过将网络分解为独立的聚合生死过程,将微观状态聚合为数量更少的宏观状态,并给出了一种快速确定稳态截断误差的方法。对于给定的误差容限,有限缓冲区的最大大小也可以预先计算,而无需进行代价高昂的dCME试解。我们展示了三个多尺度网络的精确计算概率分布,即一个6节点的toggle开关、11节点的噬菌体λ表观遗传电路和16节点的MAPK级联网络,后两个网络没有已知解。我们还展示了如何从首次通过时间计算罕见事件的概率,这是另一类未解决的问题,由于时间尺度上的巨大差异,对基于模拟的技术具有挑战性。总体而言,ACME方法能够为一大类网络精确且高效地求解dCME。

相似文献

1
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS.使用多有限缓冲区的精确化学主方程求解
Multiscale Model Simul. 2016;14(2):923-963. doi: 10.1137/15M1034180. Epub 2016 Jun 29.
7
Delay chemical master equation: direct and closed-form solutions.延迟化学主方程:直接和封闭形式的解。
Proc Math Phys Eng Sci. 2015 Jul 8;471(2179):20150049. doi: 10.1098/rspa.2015.0049.

引用本文的文献

1
Transcriptional bursting dynamics in gene expression.基因表达中的转录爆发动力学。
Front Genet. 2024 Sep 13;15:1451461. doi: 10.3389/fgene.2024.1451461. eCollection 2024.
2
Distilling dynamical knowledge from stochastic reaction networks.从随机反应网络中提取动态知识。
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2317422121. doi: 10.1073/pnas.2317422121. Epub 2024 Mar 26.
8
Sensitivities of Regulation Intensities in Feed-Forward Loops with Multistability.具有多稳态的前馈回路中调节强度的敏感性
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1969-1972. doi: 10.1109/EMBC.2019.8856532.

本文引用的文献

3
Direct solution of the Chemical Master Equation using quantized tensor trains.使用量化张量列直接求解化学主方程。
PLoS Comput Biol. 2014 Mar 13;10(3):e1003359. doi: 10.1371/journal.pcbi.1003359. eCollection 2014 Mar.
4
How reliable is the linear noise approximation of gene regulatory networks?基因调控网络的线性噪声近似有多可靠?
BMC Genomics. 2013;14 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2164-14-S4-S5. Epub 2013 Oct 1.
7
Stochastic modeling of cellular networks.细胞网络的随机建模。
Methods Cell Biol. 2012;110:111-37. doi: 10.1016/B978-0-12-388403-9.00005-9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验