Suppr超能文献

使用轨迹加权集合高效地对化学反应动力学网络进行随机模拟。

Efficient stochastic simulation of chemical kinetics networks using a weighted ensemble of trajectories.

机构信息

Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

出版信息

J Chem Phys. 2013 Sep 21;139(11):115105. doi: 10.1063/1.4821167.

Abstract

We apply the "weighted ensemble" (WE) simulation strategy, previously employed in the context of molecular dynamics simulations, to a series of systems-biology models that range in complexity from a one-dimensional system to a system with 354 species and 3680 reactions. WE is relatively easy to implement, does not require extensive hand-tuning of parameters, does not depend on the details of the simulation algorithm, and can facilitate the simulation of extremely rare events. For the coupled stochastic reaction systems we study, WE is able to produce accurate and efficient approximations of the joint probability distribution for all chemical species for all time t. WE is also able to efficiently extract mean first passage times for the systems, via the construction of a steady-state condition with feedback. In all cases studied here, WE results agree with independent "brute-force" calculations, but significantly enhance the precision with which rare or slow processes can be characterized. Speedups over "brute-force" in sampling rare events via the Gillespie direct Stochastic Simulation Algorithm range from ~10(12) to ~10(18) for characterizing rare states in a distribution, and ~10(2) to ~10(4) for finding mean first passage times.

摘要

我们将“加权集成”(WE)模拟策略应用于一系列系统生物学模型,这些模型的复杂程度从一维系统到具有 354 个物种和 3680 个反应的系统不等。WE 相对容易实现,不需要广泛地调整参数,不依赖于模拟算法的细节,并且可以促进对极罕见事件的模拟。对于我们研究的耦合随机反应系统,WE 能够在所有时间 t 为所有化学物质产生联合概率分布的准确而有效的近似值。WE 还能够通过构建具有反馈的稳态条件,有效地提取系统的平均首次通过时间。在所有在这里研究的情况下,WE 的结果与独立的“暴力”计算一致,但显著提高了对稀有或缓慢过程进行特征描述的精度。通过 Gillespie 直接随机模拟算法对稀有事件进行采样的“暴力”计算的加速范围从对分布中的稀有状态进行特征描述的10(12)到10(18),以及寻找平均首次通过时间的10(2)到10(4)。

相似文献

2
BioSimulator.jl: Stochastic simulation in Julia.BioSimulator.jl:Julia 中的随机模拟。
Comput Methods Programs Biomed. 2018 Dec;167:23-35. doi: 10.1016/j.cmpb.2018.09.009. Epub 2018 Oct 10.
7
Hybrid stochastic simulations of intracellular reaction-diffusion systems.细胞内反应扩散系统的混合随机模拟
Comput Biol Chem. 2009 Jun;33(3):205-15. doi: 10.1016/j.compbiolchem.2009.03.002. Epub 2009 Apr 2.

引用本文的文献

3
Weighted ensemble: Recent mathematical developments.加权集成:最新数学进展。
J Chem Phys. 2023 Jan 7;158(1):014108. doi: 10.1063/5.0110873.
5
OPTIMIZING WEIGHTED ENSEMBLE SAMPLING OF STEADY STATES.优化稳态的加权集成采样
Multiscale Model Simul. 2020;18(2):646-673. doi: 10.1137/18m1212100. Epub 2020 May 6.

本文引用的文献

7
Rare switching events in non-stationary systems.非稳态系统中的罕见转换事件。
J Chem Phys. 2012 May 7;136(17):174119. doi: 10.1063/1.4704812.
8
Non-stationary forward flux sampling.非平稳正向通量抽样。
J Chem Phys. 2012 May 7;136(17):174118. doi: 10.1063/1.4704810.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验