Kim Jinsu, Dark Jason, Enciso German, Sindi Suzanne
Department of Mathematics, University of California, Irvine, California 92697, USA.
Department of Applied Mathematics, University of California, Merced, California 95343, USA.
J Chem Phys. 2020 Aug 7;153(5):054117. doi: 10.1063/5.0013457.
State space truncation methods are widely used to approximate solutions of the chemical master equation. While most methods of this kind focus on truncating the state space directly, in this work, we propose modifying the underlying chemical reaction network by introducing slack reactants that indirectly truncate the state space. More specifically, slack reactants introduce an expanded chemical reaction network and impose a truncation scheme based on desired mass conservation laws. This network structure also allows us to prove inheritance of special properties of the original model, such as irreducibility and complex balancing. We use the network structure imposed by slack reactants to prove the convergence of the stationary distribution and first arrival times. We then provide examples comparing our method with the stationary finite state projection and finite buffer methods. Our slack reactant system appears to be more robust than some competing methods with respect to calculating first arrival times.
状态空间截断方法被广泛用于近似化学主方程的解。虽然这类方法大多直接关注截断状态空间,但在本工作中,我们提出通过引入松弛反应物来修改基础化学反应网络,从而间接截断状态空间。更具体地说,松弛反应物引入了一个扩展的化学反应网络,并基于所需的质量守恒定律施加截断方案。这种网络结构还使我们能够证明原始模型特殊性质的遗传性,如不可约性和复杂平衡。我们利用松弛反应物施加的网络结构来证明平稳分布和首次到达时间的收敛性。然后,我们提供了将我们的方法与平稳有限状态投影法和有限缓冲法进行比较的示例。在计算首次到达时间方面,我们的松弛反应物系统似乎比一些竞争方法更稳健。