Suppr超能文献

用于疟原虫感染红细胞磁分离的微流控通道设计

Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.

作者信息

Wu Wei-Tao, Martin Andrea Blue, Gandini Alberto, Aubry Nadine, Massoudi Mehrdad, Antaki James F

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA.

出版信息

Microfluid Nanofluidics. 2016;20(2). doi: 10.1007/s10404-016-1707-4. Epub 2016 Feb 2.

Abstract

This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han et al. 2006 (Han and Frazier 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40% with a 10% of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80% improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost 2 fold, from 26% to 49%. Further addition of a downstream diffuser reduced remixing, hence improved separation efficiency to 72%. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling-up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput - which is critical for clinical implementation as a blood-filtration system.

摘要

本研究的动机是开发一种用于去除疟疾感染的寄生红细胞(pRBCs)的血细胞过滤装置。使用计算流体动力学离散元方法(CFD-DEM)将血液建模为多组分流体,其中血浆被视为牛顿流体,红细胞(RBCs)被建模为软球固体颗粒,它们在阻力、与其他RBCs的碰撞以及磁力的影响下移动。CFD-DEM模型首先通过与Han等人2006年(Han和Frazier,2006)的实验数据进行比较来验证,该实验数据涉及用于顺磁性脱氧血细胞的微流控磁泳分离器。然后将该计算模型应用于对血细胞比容为40%且10%的RBCs为pRBCs的平行板分离器的参数研究。具体而言,我们研究了在通道上游引入收缩以将磁性细胞转移到磁力最大的近壁层内的假设。模拟比较了各种几何形状对pRBCs分层效率的影响。对于标称高度为100 µm的通道,添加80%的上游收缩将与磁壁相邻保留的pRBCs比例(分离效率)提高了近2倍,从26%提高到49%。进一步添加下游扩散器减少了再混合,从而将分离效率提高到72%。收缩引入了更大的压降(从17到495 Pa),在将该设计放大到临床规模系统时应予以考虑。总体而言,该设计的优点包括其适应生理血细胞比容的能力和高通量——这对于作为血液过滤系统的临床应用至关重要。

相似文献

1
Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.
Microfluid Nanofluidics. 2016;20(2). doi: 10.1007/s10404-016-1707-4. Epub 2016 Feb 2.
2
Removal of malaria-infected red blood cells using magnetic cell separators: A computational study.
Appl Math Comput. 2012 Feb 15;218(12):6841-6850. doi: 10.1016/j.amc.2011.12.057.
3
Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study.
Phys Biol. 2012 Apr;9(2):026010. doi: 10.1088/1478-3975/9/2/026010. Epub 2012 Apr 4.
4
Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation.
Comput Methods Programs Biomed. 2022 Nov;226:107117. doi: 10.1016/j.cmpb.2022.107117. Epub 2022 Sep 13.
5
High gradient magnetic field microstructures for magnetophoretic cell separation.
J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Aug 1;1027:194-9. doi: 10.1016/j.jchromb.2016.05.046. Epub 2016 Jun 1.
6
Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
J Biomech Eng. 2018 Jun 1;140(6). doi: 10.1115/1.4039897.
7
Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood.
Small. 2018 Aug;14(34):e1801731. doi: 10.1002/smll.201801731. Epub 2018 Jul 25.
9
Magnetic separation of malaria-infected red blood cells in various developmental stages.
Anal Chem. 2013 Aug 6;85(15):7316-23. doi: 10.1021/ac4012057. Epub 2013 Jul 10.
10
Computational simulation of a non-newtonian model of the blood separation process.
Artif Organs. 2005 Dec;29(12):949-59. doi: 10.1111/j.1525-1594.2005.00164.x.

引用本文的文献

2
Microsampling tools for collecting, processing, and storing blood at the point-of-care.
Bioeng Transl Med. 2022 Dec 29;8(2):e10476. doi: 10.1002/btm2.10476. eCollection 2023 Mar.
3
Advances in Microfluidics for Single Red Blood Cell Analysis.
Biosensors (Basel). 2023 Jan 9;13(1):117. doi: 10.3390/bios13010117.
4
Clot-targeted magnetic hyperthermia permeabilizes blood clots to make them more susceptible to thrombolysis.
J Thromb Haemost. 2022 Nov;20(11):2556-2570. doi: 10.1111/jth.15846. Epub 2022 Sep 2.
6
Simulation of blood flow in a sudden expansion channel and a coronary artery.
J Comput Appl Math. 2020 Oct;376. doi: 10.1016/j.cam.2020.112856. Epub 2020 Mar 19.
7
Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin: Chemical versus enzymatic processes.
PLoS One. 2021 Sep 3;16(9):e0257061. doi: 10.1371/journal.pone.0257061. eCollection 2021.
8
Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches.
Int J Mol Sci. 2020 Mar 27;21(7):2323. doi: 10.3390/ijms21072323.
9
Biomimetic pulsatile flows through flexible microfluidic conduits.
Biomicrofluidics. 2019 Jan 8;13(1):014103. doi: 10.1063/1.5065901. eCollection 2019 Jan.
10
Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes.
Ann Biomed Eng. 2017 Dec;45(12):2888-2898. doi: 10.1007/s10439-017-1925-2. Epub 2017 Sep 18.

本文引用的文献

1
Study of blood flow in several benchmark micro-channels using a two-fluid approach.
Int J Eng Sci. 2015 Oct 1;95:49-59. doi: 10.1016/j.ijengsci.2015.06.004.
2
A numerical study of blood flow using mixture theory.
Int J Eng Sci. 2014 Mar 1;76:56-72. doi: 10.1016/j.ijengsci.2013.12.001.
3
Magnetic separation of malaria-infected red blood cells in various developmental stages.
Anal Chem. 2013 Aug 6;85(15):7316-23. doi: 10.1021/ac4012057. Epub 2013 Jul 10.
4
5
A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells.
Lab Chip. 2012 Jun 21;12(12):2175-81. doi: 10.1039/c2lc40072c. Epub 2012 Mar 28.
6
Removal of malaria-infected red blood cells using magnetic cell separators: A computational study.
Appl Math Comput. 2012 Feb 15;218(12):6841-6850. doi: 10.1016/j.amc.2011.12.057.
7
Frictional Behavior of Individual Vascular Smooth Muscle Cells Assessed By Lateral Force Microscopy.
Materials (Basel). 2010 Sep 1;3(9):4668-4680. doi: 10.3390/ma3094668.
8
Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation.
J Magn Magn Mater. 2009 May;321(10):1436-1439. doi: 10.1016/j.jmmm.2009.02.062.
10
Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length.
Artif Organs. 2009 Sep;33(9):749-56. doi: 10.1111/j.1525-1594.2009.00891.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验