Frankel D S, Olson R J, Frankel S L, Chisholm S W
KTAADN, Inc., Newton Centre, Massachusetts 02159.
Cytometry. 1989 Sep;10(5):540-50. doi: 10.1002/cyto.990100509.
Flow cytometry has been used over the past 5 years to begin detailed exploration of the distribution and abundance of picoplankton in the oceans. Light scattering and fluorescence measurements on individual plankton cells in seawater samples allow construction of population signatures from size and pigment characteristics. The use of "list mode" data has made these studies possible, but on-shore analysis of copious data does not permit on-site reexamination of important or unexpected observations, and overall effort is greatly handicapped by data analysis time. Here we describe the application of neural net computer technology to the analysis of flow cytometry data. Although the data used in this study are from oceanographic research, the results are general and should be directly applicable to flow cytometry data of any sort. Neural net computers are ideally suited to perform the pattern recognition required for the quantitative analysis of flow cytometry data. Rather than being programmed to perform analysis, the neural net computer is "taught" how to analyze the cell populations by presenting examples of inputs and correct results. Once the system is "trained," similar data sets can be analyzed rapidly and objectively, minimizing the need for laborious user interaction. The neural network described here offers the advantages of 1) adaptability to changing conditions and 2) potential real-time analysis. High accuracy and processing speed near that required for real-time classification have been achieved in a software simulation of the neural network on a Macintosh SE personal computer.
在过去五年中,流式细胞术已被用于开始详细探索海洋中微微型浮游生物的分布和丰度。对海水样本中单个浮游生物细胞进行光散射和荧光测量,可以根据大小和色素特征构建种群特征。“列表模式”数据的使用使这些研究成为可能,但对大量数据进行岸上分析不允许对重要或意外观测结果进行现场重新检查,而且数据分析时间严重限制了整体研究工作。在此,我们描述了神经网络计算机技术在流式细胞术数据分析中的应用。尽管本研究中使用的数据来自海洋学研究,但结果具有普遍性,应可直接应用于任何类型的流式细胞术数据。神经网络计算机非常适合执行流式细胞术数据定量分析所需的模式识别。神经网络计算机不是通过编程来执行分析,而是通过呈现输入示例和正确结果来“学习”如何分析细胞群体。一旦系统“训练”完成,类似的数据集就可以快速、客观地进行分析,最大限度地减少了对繁琐用户交互的需求。这里描述的神经网络具有以下优点:1)适应不断变化的条件,2)具有潜在的实时分析能力。在一台Macintosh SE个人计算机上对神经网络进行的软件模拟中,已经实现了接近实时分类所需的高精度和处理速度。