Suppr超能文献

个人计算机上流式细胞仪列表模式数据的聚类分析。

Cluster analysis of flow cytometric list mode data on a personal computer.

作者信息

Bakker Schut T C, De Grooth B G, Greve J

机构信息

Department of Applied Physics, University of Twente, Enschede, The Netherlands.

出版信息

Cytometry. 1993;14(6):649-59. doi: 10.1002/cyto.990140609.

Abstract

A cluster analysis algorithm, dedicated to analysis of flow cytometric data is described. The algorithm is written in Pascal and implemented on an MS-DOS personal computer. It uses k-means, initialized with a large number of seed points, followed by a modified nearest neighbor technique to reduce the large number of subclusters. Thus we combine the advantage of the k-means (speed) with that of the nearest neighbor technique (accuracy). In order to achieve a rapid analysis, no complex data transformations such as principal components analysis were used. Results of the cluster analysis on both real and artificial flow cytometric data are presented and discussed. The results show that it is possible to get very good cluster analysis partitions, which compare favorably with manually gated analysis in both time and in reliability, using a personal computer.

摘要

描述了一种专门用于分析流式细胞术数据的聚类分析算法。该算法用Pascal编写,并在MS-DOS个人计算机上实现。它使用k均值算法,用大量种子点初始化,然后采用改进的最近邻技术来减少大量子聚类。因此,我们将k均值算法的优点(速度)与最近邻技术的优点(准确性)结合起来。为了实现快速分析,未使用诸如主成分分析等复杂的数据变换。给出并讨论了对真实和人工流式细胞术数据进行聚类分析的结果。结果表明,使用个人计算机能够得到非常好的聚类分析划分,在时间和可靠性方面都优于手动设门分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验