Suppr超能文献

理解单离子磁体的各向异性磁矩。

Understanding the Magnetic Anisotropy toward Single-Ion Magnets.

机构信息

Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, P. R. China.

出版信息

Acc Chem Res. 2016 Nov 15;49(11):2381-2389. doi: 10.1021/acs.accounts.6b00222. Epub 2016 Oct 21.

Abstract

Single-molecule magnets (SMMs) can retain their magnetization status preferentially after removal of the magnetic field below a certain temperature. The unique property, magnetic bistable status, enables the molecule-scale SMM to become the next-generation high-density information storage medium. SMMs' new applications are also involved in high-speed quantum computation and molecular spintronics. The development of coordination chemistry, especially in transition metal (3d) and lanthanide (4f) complexes, diversifies SMMs by introducing new ones. In both 3d and 4f SMMs, the ligands play a fundamental role in determining the SMMs' magnetic properties. The strategies for rationally designing and synthesizing high-performance SMMs require a comprehensive understanding of the effects of a crystal field. In this Account, we focus mainly on the magneto-structural correlations of 4f or 3d single-ion magnets (SIMs), within which there is only one spin carrier. These one-spin carrier complexes benefit from getting rid of exchange interactions and relatively large distances of magnetic centers in the lattice, providing the ease to construct high-performance SIMs from the crystal field perspective. We will briefly introduce the crystal field approach for 4f or 3d complexes and then the magnetic anisotropy analysis via the displaced-charge electrostatic model. This idea has been proposed for years, and the related work is also highlighted. The angular-resolved magnetometry method, predominating in determining the magnetic anisotropic axes direction, is discussed. We also give a brief introduction of the quantum chemistry ab initio method, which has shown to be powerful in understanding the magnetic anisotropy and low-lying states. In the constructing and characterizing part, we give an overview of the SIMs based on lanthanide and transition ions, reported by our group in the past 5 years. In the 4f-SIMs survey, we discuss how β-diketonates and cyclomultienes, and their combination, as ligands to influence magnetic anisotropy and provide some suggestion on designing SIMs based on different lanthanide ions. In the 3d-SIMs survey, we fully discuss the correlation between zero-field-splitting parameter D and molecular geometrical angle parameters. Finally, we lay out the challenges and further development of SIMs. We hope the understanding we provide about single-ion magnetic properties will be helpful to design high-performance SMMs.

摘要

单分子磁体(SMMs)在低于一定温度的磁场下可以优先保留其磁化状态。这种独特的性质,即磁双稳态,使分子级 SMM 成为下一代高密度信息存储介质。SMMs 的新应用还涉及高速量子计算和分子自旋电子学。配位化学的发展,特别是在过渡金属(3d)和镧系元素(4f)配合物方面,通过引入新的配合物使 SMMs 多样化。在 3d 和 4f SMMs 中,配体在确定 SMMs 的磁性质方面起着基本作用。合理设计和合成高性能 SMMs 的策略需要全面了解晶体场的影响。在本报告中,我们主要关注只有一个自旋载体的 4f 或 3d 单离子磁体(SIMs)的磁结构相关性。这些单自旋载体配合物受益于消除了交换相互作用和晶格中磁中心的相对较大距离,从晶体场的角度来看,它们为构建高性能 SIMs 提供了便利。我们将简要介绍 4f 或 3d 配合物的晶体场方法,然后通过位移电荷静电模型分析磁各向异性。这个想法已经提出多年了,相关工作也得到了强调。讨论了主要用于确定磁各向异性轴方向的角分辨磁强计方法。我们还简要介绍了量子化学从头计算方法,该方法已被证明在理解磁各向异性和低能态方面非常有效。在构建和表征部分,我们概述了我们小组在过去 5 年中报道的基于镧系元素和过渡离子的 SIMs。在 4f-SIMs 调查中,我们讨论了β-二酮和环多烯以及它们的组合作为配体如何影响磁各向异性,并就基于不同镧系元素离子设计 SIMs 提出了一些建议。在 3d-SIMs 调查中,我们充分讨论了零场分裂参数 D 与分子几何角参数之间的相关性。最后,我们提出了 SIMs 的挑战和进一步发展。我们希望我们对单离子磁性质的理解将有助于设计高性能的 SMMs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验