Perfetti Mauro, Rinck Julia, Cucinotta Giuseppe, Anson Christopher E, Gong Xuejun, Ungur Liviu, Chibotaru Liviu, Boulon Marie-Emmanuelle, Powell Annie K, Sessoli Roberta
Laboratory of Molecular Magnetism, Università Degli Studi di Firenze, Sesto Fiorentino, Italy.
Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
Front Chem. 2019 Jan 24;7:6. doi: 10.3389/fchem.2019.00006. eCollection 2019.
In the search for new single molecule magnets (SMM), i.e., molecular systems that can retain their magnetization without the need to apply an external magnetic field, a successful strategy is to associate 3 and 4 ions to form molecular coordination clusters. In order to efficiently design such systems, it is necessary to chemically project both the magnetic building blocks and the resultant interaction before the synthesis. Lanthanide ions can provide the required easy axis magnetic anisotropy that hampers magnetization reversal. In the rare examples of 34 SMMs containing Cr ions, the latter turn out to act as quasi-isotropic anchors which can also interact via 3-4 coupling to neighbouring Ln centres. This has been demonstrated in cases where the intramolecular exchange interactions mediated by Cr ions effectively reduce the efficiency of tunnelling without applied magnetic field. However, describing such high nuclearity systems remains challenging, from both experimental and theoretical perspectives, because the overall behaviour of the molecular cluster is heavily affected by the orientation of the individual anisotropy axes. These are in general non-collinear to each other. In this article, we combine single crystal SQUID and torque magnetometry studies of the octanuclear [CrDy(μ-OH)(μ-N)(mdea)(piv)]·3CHCl single molecule magnet (piv=pivalate and mdea=-methyldiethanol amine). These experiments allowed us to probe the magnetic anisotropy of this complex which displays slow magnetization dynamics due to the peculiar arrangement of the easy-axis anisotropy on the Dy sites. New calculations considering the entire cluster are in agreement with our experimental results.
在寻找新型单分子磁体(SMM),即无需施加外部磁场就能保持其磁化强度的分子体系时,一种成功的策略是将3个和4个离子结合形成分子配位簇。为了有效地设计此类体系,在合成之前对磁性构建单元和由此产生的相互作用进行化学规划是很有必要的。镧系离子可以提供所需的易轴磁各向异性,从而阻碍磁化反转。在少数含有铬离子的34个单分子磁体的例子中,结果表明铬离子起到准各向同性锚的作用,它也可以通过3 - 4耦合与相邻的镧系中心相互作用。这在由铬离子介导的分子内交换相互作用有效地降低了无外加磁场时的隧穿效率的情况下得到了证明。然而,从实验和理论角度来看,描述这种高核体系仍然具有挑战性,因为分子簇的整体行为受到各个各向异性轴取向的严重影响。这些轴通常彼此不共线。在本文中,我们结合了对八核[CrDy(μ - OH)(μ - N)(mdea)(piv)]·3CHCl单分子磁体(piv = 新戊酸酯,mdea = N - 甲基二乙醇胺)的单晶超导量子干涉仪(SQUID)和转矩磁测量研究。这些实验使我们能够探究该配合物的磁各向异性,由于镝(Dy)位点上易轴各向异性的特殊排列,该配合物表现出缓慢的磁化动力学。考虑整个簇的新计算结果与我们的实验结果一致。