Dornheim Tobias, Groth Simon, Sjostrom Travis, Malone Fionn D, Foulkes W M C, Bonitz Michael
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2016 Oct 7;117(15):156403. doi: 10.1103/PhysRevLett.117.156403.
We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N=1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F_{xc} of the macroscopic electron gas with an unprecedented accuracy of |ΔV|/|V|,|ΔF_{xc}|/|F|{xc}∼10^{-3}. A comparison of our new data to the recent parametrization of F{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.
我们在热力学极限下对均匀的热密电子气进行了从头算量子蒙特卡罗(QMC)模拟。通过将QMC数据与线性响应理论相结合,我们能够在热密区域的大部分范围内消除势能中的有限尺寸误差,克服了Brown等人[《物理评论快报》110, 146405 (2013)]现有有限尺寸修正方法的不足。对于多达N = 1000个电子的大量新QMC结果,使我们能够以前所未有的精度|ΔV|/|V|、|ΔFxc|/|Fxc| ∼ 10^(-3)来计算宏观电子气的势能V和交换关联自由能Fxc。将我们的新数据与Karasiev等人[《物理评论快报》112, 076403 (2014)]最近对Fxc的参数化进行比较,发现与后者存在显著偏差。