Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
Sci Rep. 2017 Aug 29;7(1):9858. doi: 10.1038/s41598-017-07501-4.
Disulfide bonds are key stabilizing and yet potentially labile cross-links in proteins. While spontaneous disulfide rearrangement through thiol-disulfide exchange is increasingly recognized to play an important physiological role, its molecular determinants are still largely unknown. Here, we used a novel hybrid Monte Carlo and Molecular Dynamics scheme to elucidate the molecular principles of thiol-disulfide exchange in proteins, for a mutated immunoglobulin domain as a model system. Unexpectedly, using simple proximity as the criterion for thiol-disulfide exchange, our method correctly predicts the experimentally observed regiospecificity and selectivity of the cysteine-rich protein. While redox reactivity has been examined primarily on the level of transition states and activation barriers, our results argue for accessibility of the disulfide by the attacking thiol given the highly dynamic and sterically demanding protein as a major bottleneck of thiol-disulfide exchange. This scenario may be similarly at play in other proteins with or without an evolutionarily designed active site.
二硫键是蛋白质中关键的稳定但潜在不稳定的交联键。虽然通过巯基-二硫键交换自发进行的二硫键重排,逐渐被认为具有重要的生理作用,但它的分子决定因素在很大程度上仍然未知。在这里,我们使用一种新的混合蒙特卡罗和分子动力学方案,来阐明蛋白质中巯基-二硫键交换的分子原理,以突变免疫球蛋白结构域作为模型系统。出乎意料的是,使用简单的临近性作为巯基-二硫键交换的标准,我们的方法正确预测了富含半胱氨酸的蛋白质的实验观察到的区域特异性和选择性。虽然氧化还原反应性主要在过渡态和活化能垒的水平上进行了研究,但我们的结果表明,由于高度动态和空间要求苛刻的蛋白质是巯基-二硫键交换的主要瓶颈,因此攻击硫醇的二硫键具有可及性。这种情况在具有或不具有进化设计的活性位点的其他蛋白质中可能也同样存在。